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Hierarchical Models
Introduction

Suppose we want to compare the distributions of several groups.For example, suppose we are looking
at a multi-center study. In particular, let’s say there are 8 hospitals in the study, and at each we
are able to look at the average response of patients to a new treatment. In this case, we have
two populations: the hospitals and the patients. The population of patients is nested within the
population of hospitals. This is an example of a hierarchical situation.
Whenever we have groups dividing a population, and we want to compare between those groups, we
can use a hierarchical model approach. In particular, for the 𝑗th group, we can define our likelihood
as 𝑝(𝑦𝑖|𝜃𝑗). Notice here that we are saying 𝜃𝑗 is the expected mean in group 𝑗, and this mean will
differ between groups, but we also expect those means to be related to one another. We can set a
prior on 𝜃𝑗 such that we treat them as coming from a common population.

𝑝(𝑦1 ∣ 𝜃1) 𝑝(𝑦2 ∣ 𝜃2) 𝑝(𝑦3 ∣ 𝜃3)

𝑦𝑗 = The observed data in the 𝑗th group
𝜃𝑗 = The mean of the 𝑗th group

(The parameter of interest)

Let’s consider a similar example. In 1993, Donald Rubin investigated a hypothetical situation
relating to hospital ratings. In particular, he divided the country into 8 geographic regions. In each
region, a random sample of hospitals were taken. The problems at each hospital were rated on a
scale from 0 to 1000, with 0 being no problems and 1000 being completely problematic. Ratings
greater than 150 were considered “worse than typical.” The data is as follows:

Region 𝑛𝑗 𝑦𝑗 𝑆𝐸(𝑦)
1 18 176 13
2 30 152 10
3 12 141 16
4 26 151 11
5 35 143 9
6 24 145 11
7 28 162 10
8 10 156 18

𝑛𝑗 is the number of observations in region 𝑗
𝑦𝑗 is the average rating in region 𝑗
𝐽 = 8 different groups to compare
What is the true average rating in region 𝑗?

In other words,
we want to determine 𝜃𝑗 for 𝑗 = 1, 2, … , 𝐽

Let 𝜃𝑗 be the true mean rating in region 𝑗. Hows can we go about comparing the mean ratings in
each area?
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• Pool all regions together and carryout and ANOVA to see if they are different

• Use sample mean from each group and conduct pairwise analysis to compare between groups

We could determine if 𝜃𝑗 is significantly different from 150, the average value cutting off worse than
typical from better than typical.

̂𝜃1 = ̄𝑦1 = 176
95 % CI: = ̄𝑦1 ± 2 ⋅ 𝑆𝐸( ̄𝑦1)
(Region 1) = 176 ± 2 ⋅ 13 = (150.5, 201.5)

Alternatively, we could perform an F-test from an ANOVA to determine if the eight means are
significantly different from each other.

𝐻0 ∶ 𝜃1 = 𝜃2 = ⋯ = 𝜃𝐽
𝐻𝑎 ∶ at least one 𝜃𝑗 is different

Grand Mean: ̂𝜃𝑗 = ̄𝑦.. = 𝑛1 ̄𝑦1 + 𝑛2 ̄𝑦2 + ⋯ + 𝑛8 ̄𝑦8
𝑛1 + 𝑛2 + ⋯ + 𝑛8

= 152.6

For every region we would use the grand mean of all hospitals for our estimate of 𝜃𝑗

Using these two approaches, we would arrive at different estimates of the mean. Let’s just consider
𝜃1 for the time being.

Using the ANOVA approach,
our estimated mean would be:

̂𝜃1 = 152.6
Using the data from just region 1,
our estimated mean would be:

̂𝜃1 = 176

⎫}}}}
⎬}}}}⎭

The true value of 𝜃1
is likely somewhere
between these two
estimates

We probably believe the true estimate is somewhere between these two. A hierarchical model will
allow us to incorporate information both from other regions and just from the 𝑗th region to better
estimate the truth.

Φ

𝜃1 𝜃2
𝜃3

𝑦1 𝑦2 𝑦3
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In general, for a hierarchical model, we will extend the inference we have done so far to include
another level of distributions. In particular:

Up until now:
𝑦|𝜃 ∼ 𝑁(𝜃, 𝜎2) 𝑦|𝜃 ∼ Bin(𝑛, 𝜃)
𝜃 ∼ 𝑁(𝜇, 𝜏2) 𝜃 ∼ Beta(𝛼, 𝛽)

Hierachical Model:
𝑝(𝑦𝑗|𝜃𝑗) Likelihood
𝑝(𝜃𝑗|𝜙) Prior
𝑝(𝜙) Hyperprior

Notice here, that we have now put a distribution on the hyperparameters. In doing so, we can
borrow strength from other groups to help estimate the mean in the 𝑗th group.
Before considering different cases of hierarchical models, we need to revisit the concept of exchange-
ability. Suppose we have J different groups. For the 𝑗th group, we have the likelihood 𝑝(𝑦𝑗|𝜃𝑗) and
prior 𝑝(𝜃𝑗). Assuming we have no further information by which to distinguish the J groups, we
assume symmetry among these parameters in their priors. We do this by modeling the priors
as being exchangeable:

⃗𝜃 = (𝜃1, 𝜃2, … , 𝜃𝐽)

𝑝( ⃗𝜃) =
𝐽

∏
𝑗=1

𝑝(𝜃𝑗|𝜙)} independent
andidentically

distributed priors on 𝜃′
𝑗𝑠

With the hyperparameters now having a distribution of their own, this can be updated as follows:
Overall Prior:

𝑝( ⃗𝜃|𝜙) = 𝑝( ⃗𝜃|𝜙)𝑝(𝜙) = [
𝐽

∏
𝑗=1

𝑝(𝜃𝑗|𝜙)] 𝑝(𝜙)

General Comments

For a hierarchical model, we have the likelihood 𝑝(𝑦|𝜃) and prior 𝑝(𝜃|𝜙) = 𝑝(𝜃|𝜙)𝑝(𝜙). In this case,
the joint posterior distribution is:

𝑝(𝜃1, ..., 𝜃𝐽 , 𝜙|𝑦) ∝ 𝑝( ⃗𝑦| ⃗𝜃)𝑝( ⃗𝜃|𝜙)𝑝(𝜙)

= [
𝐽

∏
𝑗=1

𝑝(𝑦𝑗|𝜃𝑗) 𝑝(𝜃𝑗|𝜙)] 𝑝(𝜙)

When using an uninformative prior for 𝜙, it is important to be sure that the posterior is proper.
Ultimately, we will go about doing inference in a similar manner as to what we did when there were
two unkown variables for the normal model:

1. Determine the joint posterior: 𝑝(𝜃, 𝜙|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃|𝜙)𝑝(𝜙)
2. Obtain the conditional posterior of 𝜃 given 𝜙, or 𝑝(𝜃|𝜙, 𝑦)
3. Obtain the marginal posterior of 𝜙, or 𝑝(𝜙|𝑦)

If we then are interested in a new value of 𝑦 (i.e. ̃𝑦), we can get that by taking a draw from 𝑝(𝜙|𝑦).
Then for each draw of 𝜙|𝑦, we can draw 𝑝(𝜃|𝜙⋆, 𝑦). From here, we cam then draw ̃𝑦 from the
likelihood given 𝜃⋆ and repeat this process many times. This is equivalent to a draw from the
posterior predictive distribution.
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Binomial Model

Suppose our data are discrete and arise from a binomial distribution. We will begin by discussing the
hierarchical model for this case. Suppose there are 𝐽 different groups for which was are comparing
the probability of success.

𝜃𝑗 = probability of success in group 𝑗
In this case, our likelihood would be:

𝑦𝑗|𝜃𝑗 ∼ Bin(𝑛𝑗, 𝜃𝑗), for 𝑗 = 1, ..., 𝐽

where 𝑦𝑗 is the number of successes in group 𝑗 and 𝑛𝑗 is the number of trials in group 𝑗. The prior
for 𝜃𝑗 is:

𝜃𝑗|𝛼, 𝛽 ∼ Beta(𝛼, 𝛽)
For each 𝜃𝑗 individually, we could perform inference as discussed in Chapter 2. Here, though, we
will place a prior on (𝛼, 𝛽), which will allow groups to influence one another. Thus, we also have
𝑝(𝛼, 𝛽), which we still need to determine an appropriate form for. By putting a distribution on
(𝛼, 𝛽) we are treating them as random!
The overall goal of inference is to examine the joint posterior distirbution 𝑝(𝜃1, ..., 𝜃𝐽 , 𝛼, 𝛽|𝑦). Similar
to the methods of Multiple Parameter Models, we will break this down into step to make inference
more managabe and interpretable.

Hierarchical Model:
𝑦𝑗|𝜃𝑗 ∼ Bin(𝑛𝑗, 𝜃𝑗)
𝜃𝑗|𝛼, 𝛽 ∼ Beta(𝛼, 𝛽)
𝛼, 𝛽 ∼ 𝑝(𝛼, 𝛽)

Single Parameter Model:
𝑦|𝜃𝑗 ∼ Bin(𝑛, 𝜃)
𝜃 ∼ Beta(𝛼, 𝛽)

1. Determine the joint posterior: 𝑝(𝜃1, ..., 𝜃𝐽 , 𝛼, 𝛽|𝑦)
2. Factor the joint posterior into two pieces:

(a) 𝑝(𝜃1, ..., 𝜃𝐽 |𝛼, 𝛽, 𝑦) Conditional Posterior
(b) 𝑝(𝛼, 𝛽|𝑦) Marginal Posterior

3. Determine an appropriate prior for (𝛼, 𝛽)
Lets begin by determining the joint posterior:

𝑝(𝜃1, ..., 𝜃𝐽 , 𝛼, 𝛽|𝑦) ∝ 𝑝( ⃗𝑦|𝜃1, ..., 𝜃𝐽 ,���HHH𝛼, 𝛽) 𝑝(𝜃1, ..., 𝜃𝐽 , 𝛼, 𝛽)
= 𝑝( ⃗𝑦|𝜃1, ..., 𝜃𝐽) 𝑝(𝜃1, ..., 𝜃𝐽 |𝛼, 𝛽) 𝑝(𝛼, 𝛽)

= [
𝐽

∏
𝑗=1

𝑝(𝑦𝑗|𝜃𝑗)𝑝(𝜃𝑗|𝛼, 𝛽)] 𝑝(𝛼, 𝛽) by exchangablity

= [
𝐽

∏
𝑗=1

𝜃𝑦𝑗
𝑗 (1 − 𝜃𝑗)𝑛𝑗−𝑦𝑗

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)𝜃𝛼−1

𝑗 (1 − 𝜃𝑗)𝛽−1] 𝑝(𝛼, 𝛽)

= 𝑝(𝛼, 𝛽) ( Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽))

𝐽 𝐽
∏
𝑗=1

𝜃𝑦𝑗+𝛼−1
𝑗 (1 − 𝜃𝑗)𝑛𝑗−𝑦𝑗+𝛽−1 Joint Posterior
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Now, let’s determine 𝑝(𝜃1, ..., 𝜃𝐽 |𝛼, 𝛽, 𝑦):

𝑝(𝜃1, ..., 𝜃𝐽 |𝛼, 𝛽, 𝑦) ∝
𝐽

∏
𝑗=1

𝜃𝑦𝑗+𝛼−1
𝑗 (1 − 𝜃𝑗)𝑛𝑗−𝑦𝑗+𝛽−1 ∝

𝐽
∏
𝑗=1

𝑝(𝜃𝑗|𝛼, 𝛽, 𝑦𝑗)

=
𝐽

∏
𝑗=1

Γ(𝛼 + 𝛽)
Γ(𝑦𝑗 + 𝛼)Γ(𝑛𝑗 − 𝑦𝑗 + 𝛽)𝜃𝑦𝑗+𝛼−1

𝑗 (1 − 𝜃𝑗)𝑛𝑗−𝑦𝑗+𝛽−1

𝜃𝑗|𝛼, 𝛽, 𝑦𝑗 ∼ Beta(𝑦𝑗 + 𝛼, 𝑛𝑗 − 𝑦𝑗 + 𝛽) Conditional Posterior

And finally 𝑝(𝛼, 𝛽|𝑦):

𝑝(𝛼, 𝛽|𝑦) ∝ ∫ 𝑝(𝜃1, ..., 𝜃𝐽 , 𝛼, 𝛽|𝑦)𝑑𝜃1...𝑑𝜃𝐽

= ∫ ⋯ ∫ 𝑝(𝛼, 𝛽) ( Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽))

𝐽
[

𝐽
∏
𝑗=1

𝜃𝑦𝑗+𝛼−1
𝑗 (1 − 𝜃𝑗)𝑛𝑗−𝑦𝑗+𝛽−1] 𝑑𝜃1...𝑑𝜃𝐽

= 𝑝(𝛼, 𝛽) ( Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽))

𝐽
∫ ⋯ ∫ [

𝐽
∏
𝑗=1

𝜃𝑦𝑗+𝛼−1
𝑗 (1 − 𝜃𝑗)𝑛𝑗−𝑦𝑗+𝛽−1] 𝑑𝜃1...𝑑𝜃𝐽

= 𝑝(𝛼, 𝛽) ( Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽))

𝐽 𝐽
∏
𝑗=1

Γ(𝑦𝑗 + 𝛼)Γ(𝑛𝑗 − 𝑦𝑗 + 𝛽)
Γ(𝑛𝑗 + 𝛼 + 𝛽) Marginal Posterior

Determining a useful prior for hyper-parameters can be diffcult, particularly since there is little
intuition regarding these parameters. Skipping the details as to how this prior is obtained, an unin-
formative prior can be determined to be 𝑝(𝛼, 𝛽|𝑦) ∝ (𝛼 + 𝛽)−5/2. this leads to an updatedmarginal
posterior for (𝛼, 𝛽):

𝑝(𝛼, 𝛽) ∝ (𝛼 + 𝛽)−5/2

𝑝(𝛼, 𝛽|𝑦) ∝ ( Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽))

𝐽 𝐽
∏
𝑗=1

Γ(𝑦𝑗 + 𝛼)Γ(𝑛𝑗 − 𝑦𝑗 + 𝛽)
Γ(𝑛𝑗 + 𝛼 + 𝛽) ⋅ (𝛼 + 𝛽)−5/2

This posterior distribution is not a nice convenient form that we can readily use for inference. Be-
cause this is not a standard distribution, we would need to use a computational method to
approximate this distribution. Generally, we will develop a method to draw samples from the
posterior distribution. We will use those samples as our best approximation for the true dis-
tribution, and we can empirically determine the mean, posterior interval, and any other quantities
of interest from there.

Binomial Example Consider an extension to the binomial example we discussed in section
2.1.6. In particular, people from the greater Rochester area received a Facebook sidebar advertise-
ment for Restaurant Good Luck. Facebook users were targeted based on their address, being in
either the City of Rochester, Henrietta, Pittsford, Brighton, Fairport, Penfield, or Webster. Good
Luck is interested in determining the proportion of people who click the link based on where they
live. This information can help better determine the areas that people who most likely will eat at
Good Luck live. We have data from this study as follows:



April 9, 2025 Normal Model - 6

Area 𝑛𝑗 𝑦𝑗
Rochester 73 20
Henrietta 32 5
Pittsford 52 18
Brighton 21 8
Fairport 24 6
Penfield 19 4
Webster 34 10

𝜃𝑗 = probability of clicking on the ad in area 𝑗
𝑦𝑗|𝜃𝑗 ∼ Bin(𝑛𝑗, 𝜃𝑗)
𝜃𝑗|𝛼, 𝛽 ∼ Beta(𝛼, 𝛽)
𝐽 = 7
𝑝(𝛼, 𝛽) ∝ (𝛼 + 𝛽)−5/2

Let’s consider posterior inference for this scenario using an uninformative prior.

𝜃𝑗|𝛼, 𝛽, 𝑦𝑗 ∼ Beta(𝑦𝑗 + 𝛼, 𝑛𝑗 − 𝑦𝑗 + 𝛽)
𝛼, 𝛽 ∼ 𝑝(𝛼, 𝛽) ∝ (𝛼 + 𝛽)−5/2

𝑝(𝛼, 𝛽|𝑦) ∝ ( Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽))

𝐽 𝐽
∏
𝑗=1

Γ(𝑦𝑗 + 𝛼)Γ(𝑛𝑗 − 𝑦𝑗 + 𝛽)
Γ(𝑛𝑗 + 𝛼 + 𝛽) ⋅ (𝛼 + 𝛽)−5/2

𝜃1|𝛼, 𝛽, 𝑦1 ∼ Beta(20 + 𝛼, 73 − 20 + 𝛽) 𝜃2|𝛼, 𝛽, 𝑦2 ∼ Beta(5 + 𝛼, 32 − 5 + 𝛽)

Find a way to sample (𝛼, 𝛽) from the posterior distribution. We can then sample 𝜃𝑗 from the
conditional posterior distribution. Finally, we can sample 𝑦𝑗 from the likelihood given 𝜃𝑗. This
will give us a sample of 𝑦𝑗 that is consistent with the data we have observed. (MCMC Sampling;
Chapter 5)

Normal Model

Now, let’s consider the example of our data being normally distributed, with unknown mean and
known variance. In this case:

𝑦𝑖𝑗|𝜃𝑗 ∼ 𝒩(𝜃𝑗.𝜎2), for 𝑖 = 1, ..., 𝑛𝑗, 𝑗 = 1, ..., 𝐽

θ1 θ2
If instead of dealing with each 𝑦𝑖𝑗 individually, we look at ̄𝑦𝑗 = 1

𝑛 ∑𝑛𝑗
𝑖=1 𝑦𝑖𝑗, then we have 𝜎2/𝑛𝑗

and our likelihood is:
̄𝑦𝑗|𝜃𝑗 ∼ 𝒩(𝜃𝑗,

𝜎2

𝑛𝑗
), for 𝑗 = 1, ..., 𝐽



April 9, 2025 Normal Model - Posterior Distribution(s) 7

The last piece of information we need is the overall mean for al the data this quantity is given as
follows:

̄𝑦.. =
∑𝑗 ∑𝑖 𝑦𝑖𝑗

∑𝑗 𝑛𝑗
(Grand Mean)

As previously discussed with our motivating example, if we want to estimate 𝜃𝑗, we likely will want
a posterior estimate somewhere between ̄𝑦𝑗 and ̄𝑦... In particular, we want something of the form:

̂𝜃𝑗 = 𝜆𝑗 ̄𝑦𝑗 + (1 − 𝜆𝑗) ̄𝑦..

𝜆𝑗 will be a quantity between 0 and 1. This weighting of the posterior mean will depend on choice
of prior used. Lets consider a few options:

Mean Weights
1. If we let each 𝜃𝑗 have an independent uniform distribution on (−∞, ∞), then the posterior

mean 𝜃𝑗 is:

𝜃𝑗|𝜇, 𝜏2 ∼ 𝒩(0, ∞) 7 No sharing of information

2. Another option would be to restrict all 𝜃𝑗 to equal 𝜃⋆ and then place a uniform prior on 𝜃.
This would look like:

𝜃𝑗|𝜇, 𝜏2 ∼ 𝒩(𝜇, 0) 7 Complete sharing of information

3. What if we used 𝜃𝑗 ∼ 𝒩(𝜇, 𝜏2), for exchangable 𝜃𝑗?

̄𝑦𝑗|𝜃𝑗 ∼ 𝒩(𝜃𝑗,
𝜎2

𝑛𝑗
)

𝜃𝑗|𝜇, 𝜏2 ∼ 𝒩(𝜇, 𝜏2)
𝑝(𝜇, 𝜏2)

Posterior mean of each 𝜃𝑗3 will be a weighted average
of ̄𝑦𝑗 and ̄𝑦..

Posterior Distribution(s)
If we us this prior for 𝜃, we also would want to place priors on 𝜇 and 𝜏 in order to make this a true
hierarchical model. Using an uninformative uniform prior for 𝜇|𝜏 gives:

𝑝(𝜇, 𝜏) = 𝑝(𝜇|𝜏)𝑝(𝜏) ∝ 𝑝(𝜏)

Having an uninformative prior on 𝜇 is fine since the data has plenty enough information for this.
We will discuss the prior for 𝜏 in more detail later.
In this case, the joint posterior can be written as follows:

𝑝(𝜃1, ..., 𝜃𝐽 , 𝜇, 𝜏 |𝑦) ∝ 𝑝( ̄𝑦1, ..., ̄𝑦𝐽 |𝜃1, ..., 𝜃𝐽)𝑝(𝜃1, ..., 𝜃𝐽 |𝜇, 𝜏)𝑝(𝜇, 𝜏)

by exchangability → = [
𝐽

∏
𝑗=1

𝑝( ̄𝑦𝑗|𝜃𝑗)𝑝(𝜃𝑗|𝜇, 𝜏)] 𝑝(𝜇, 𝜏)

∝ [
𝐽

∏
𝑗=1

exp (−( ̄𝑦𝑗 − 𝜃𝑗)2

2𝜎2 ) ⋅ 1
𝜏 exp (−(𝜃𝑗 − 𝜇)2

2𝜏2 )] 𝑝(𝜏)
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As with other scenarios, we will consider this joint posterior based on the decomposed pieces.

𝑝(𝜃1, ..., 𝜃𝐽 , 𝜇, 𝜏 |𝑦) ∝ 𝑝(𝜃1, ..., 𝜃𝐽 |𝜇, 𝜏 , 𝑦)𝑝(𝜇, 𝜏|𝑦)

= [
𝐽

∏
𝑗=1

𝑝(𝜃𝑗|𝜇, 𝜏 , 𝑦)] 𝑝(𝜇, 𝜏|𝑦)

Let’s begin with 𝑝(𝜃1, ..., 𝜃𝐽 |𝜇, 𝜏 , 𝑦)

𝑝(𝜃1, ..., 𝜃𝐽 |𝜇, 𝜏 , 𝑦) ∝
𝐽

∏
𝑗=1

[exp {−( ̄𝑦𝑗 − 𝜃𝑗)2

2𝜎2 } exp {−(𝜃𝑗 − 𝜇)2

2𝜏2 }]

𝑝(𝜃𝑗|𝜇, 𝜏 , 𝑦) ∝ exp {−( ̄𝑦𝑗 − 𝜃𝑗)2

2𝜎2 − (𝜃𝑗 − 𝜇)2

2𝜏2 }

→ From here, combine the two parts, drop parts without 𝜃𝑗
and work into a recognizable form as we did in the notes on single parameter models

𝑝(𝜃𝑗|𝜇, 𝜏 , 𝑦) = 𝒩 ⎛⎜
⎝

̄𝑦𝑗
𝜎2

𝑗
+ 𝜇

𝜏2

1
𝜎2

𝑗
+ 1

𝜏2
, 1

1
𝜎2

𝑗
+ 1

𝜏2

⎞⎟
⎠

Conditional Posterior

Now let’s consider 𝑝(𝜇, 𝜏|𝑦) Marginal Posterior.

𝑝(𝜇, 𝜏|𝑦) = ∫ ⋯ ∫ 𝑝(𝜃1, ..., 𝜃𝐽 , 𝜇, 𝜏 |𝑦)𝑑𝜃1...𝑑𝜃𝐽

𝑝(𝜇, 𝜏|𝑦) ∝ 𝑝(𝑦|𝜇, 𝜏)𝑝(𝜇, 𝜏) ∝ 𝑝(𝑦|𝜇, 𝜏)���HHH𝑝(𝜇|𝜏)𝑝(𝜏)

𝑝(𝜇, 𝜏|𝑦) ∝ [
𝐽

∏
𝑗=1

𝑝( ̄𝑦𝑗|𝜇, 𝜏)] 𝑝(𝜏)

It follows from this that this marginal posterior will have a
normal distribution. As such, it is easier to use the law of total
expectation to find the mean & variance than to solve this integral.

𝔼( ̄𝑦𝑗|𝜇, 𝜏) = 𝔼 [𝔼( ̄𝑦𝑗|𝜃𝑗)|𝜇, 𝜏]
= 𝔼(𝜃𝑗|𝜇, 𝜏) = 𝜇

𝕍( ̄𝑦𝑗|𝜇, 𝜏) = 𝔼 [𝕍( ̄𝑦𝑗|𝜃𝑗)|𝜇, 𝜏] + 𝕍 [𝔼( ̄𝑦𝑗|𝜃𝑗)|𝜇, 𝜏]
= 𝔼 [𝜎2

𝑗 |𝜇, 𝜏] + 𝕍 [𝜃𝑗|𝜇, 𝜏] = 𝜏2 + 𝜎2
𝑗

𝑝(𝜇, 𝜏|𝑦) ∝ 𝑝(𝜏)
𝐽

∏
𝑗=1

[(𝜎2
𝑗 + 𝜏)−1/2 exp {−( ̄𝑦𝑗 − 𝜇)2

2(𝜎2
𝑗 + 𝜏2) }]
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Decomposing this into its two pieces gives us the the posterior distribution of 𝜇|𝜏 as:

𝑝(𝜇, 𝜏|𝑦) = 𝑝(𝜇|𝜏, 𝑦)𝑝(𝜏|𝑦) 𝑝(𝜇|𝜏, 𝑦) ∝ 𝑝(𝜇, 𝜏|𝑦)

∝
𝐽

∏
𝑗=1

exp {−( ̄𝑦𝑗 − 𝜇)2

2(𝜎2
𝑗 + 𝜏2) } = exp {−

𝐽
∑
𝑗=1

( ̄𝑦𝑗 − 𝜇)2

2(𝜎2
𝑗 + 𝜏2)}

𝑝(𝜇|𝜏, 𝑦) ∼ 𝒩 ⎛⎜
⎝

∑𝐽
𝑗=1

̄𝑦𝑗
𝜎2

𝑗 +𝜏2

∑𝐽
𝑗=1

1
𝜎2

𝑗 +𝜏2

, 1
∑𝐽

𝑗=1
1

𝜎2
𝑗 +𝜏2

⎞⎟
⎠

= 𝒩( ̂𝜇, 𝜈𝜇)

And the posterior distribution of 𝜏|𝜇 is as follows:

𝑝(𝜏|𝑦) ∝ ∫ 𝑝(𝜇, 𝜏|𝑦)𝑑𝜇

𝑝(𝜏|𝑦) = 𝑝(𝜇, 𝜏|𝑦)
𝑝(𝜇|𝜏, 𝑦) 𝑝(𝜇, 𝜏|𝑦) = 𝑝(𝜇|𝜏, 𝑦)𝑝(𝜏|𝑦)

∝
𝑝(𝜏) ∏𝐽

𝑗=1 [(𝜎2
𝑗 + 𝜏)−1/2 exp {−( ̄𝑦𝑗−𝜇)2

2(𝜎2
𝑗 +𝜏2) }]

𝜈−1/2
𝜇 exp {−(𝜇−𝜇̂𝑗)2

2𝜈𝜇
}

𝑝(𝜏|𝑦) ∝ 𝑝(𝜏) 𝜈−1/2
𝜇

𝐽
∏
𝑗=1

[(𝜎2
𝑗 + 𝜏)−1/2 exp {−( ̄𝑦𝑗 − ̂𝜇)2

2(𝜎2
𝑗 + 𝜏2) }]

For the prior 𝑝(𝜏), we could use an uninformative approach and do 𝑝(𝜏) ∝ 𝑐. While this will lead to
a proper posterior, it is often better to use something that is somewhat informative. (i.e. determine
a “best guess” or an upper bound for 𝜏)
To draw inference from this joint posterior distribution, we again would need to use some sort of
computational approximation. We could draw a sample from 𝑝(𝜏|𝑦). Then draw from 𝑝(𝜇|𝜏, 𝑦) and
finally from 𝑝(𝜃1, ..., 𝜃𝐽 |𝜇, 𝜏 , 𝑦).

Procedure
1. Sample 𝜏 from 𝑝(𝜏|𝑦) using MCMC Methods
2. Use the sample of 𝜏 to sample 𝜇 from 𝑝(𝜇|𝜏, 𝑦)
3. Use the sample of (𝜇, 𝜏) to draw samples of 𝜃𝑗 from 𝑝(𝜃𝑗|𝜇, 𝜏 , 𝑦)
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