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Multiple Parameter Models
Most of the time, it is more likely that we have more than one unknown parameter. For example, we may know that
data is normally distributed, but we do not know their mean or variance. In such scenarios, we need to generalize
the methods from single-parameter models to hold for the case of multiple unknown parameters.

Multinomial Moldel

In Chapter 2, we considered the binomial model. For the binomial model, we had binary data (success/failure),
where we ultimately wanted to draw inference on the probability of success. We now extend this discrete distribution
to the case of a variable with more than two categories. In this case, we use the multinomial distribution for modeling
more than two outcomes (e.g. yes, maybe, no)
If y ∼ Multi(n, θ1, ..., θk) then the likelihood function is as follows:

Recall:
Binomial: p(y|θ) = n!

y!(n − y!)θy(1 − θ)n−y

Multinomial: p(y⃗|θ⃗) = n!
y1! × y2! × · · · × yk!θ

y1
1 × θ y2

2 × · · · × θ yk

k

p(y⃗|θ⃗) ∝
k∏

j=1
θ

yj

j

where:
θj = probability of observing category j

yj = number of observations in category j

In this case, yk is the count of the number of observations in the k-th category. Additionally, note that
k∑

i=1
θi = 1.

For convenience, we typically write θ = (θ1, ..., θk). Ultimately, our goal is to draw inference regarding θ, or the
probability of falling into each of the k categories.
When working with the binomial model, we used a beta prior. Now that we have extended the binomial distribution
to the multinomial distribution, we also need to extend the beta prior. By extending the beta prior, we are able to
get a Dirichlet distribution

Recall:
Beta: p(θ|a, b) = Γ(a + b)

Γ(a)Γ(b) θa−1(1 − θ)b−1

Dirichlet: p(θ|α1, ..., αk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

θαi−1
i

where: αj − 1 = prior number of events in category j

E(θj) = αj∑k
i=1 αi

& V(θj) =
αj(
∑k

i=1 αi − αj)
(
∑k

i=1 αi)2(
∑k

i=1 αi + 1)

Using the multinomial likelihood and a general Dirichlet prior, what is the posterior distribution for θ?

p(θ|y⃗, α⃗) ∝ p(y⃗|θ⃗) p(θ⃗|α⃗) ∝
k∏

j=1
θ

yj

j

k∏
i=1

θαi−1
i

∝
k∏

j=1
θ

yj+αj−1
j

Kernel of Dirichlet(y⃗ + α⃗)

Just as we did with the beta distribution, if we set the hyperparameters for the Dirichlet distribution to all equal 1,
then this is a uniform prior, which would be uninformative. Another uninformative option is to set all the hyper-
parameters equal to 0. This would be an improper prior, but it will lead to a proper posterior so long as each category
has at least one observation from the data.
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Example:
During the 2020 presidential election, many polls were taken to at- tempt to predict the outcome of the election.

Let:
θ1 = proportion of voters favoring Trump
θ2 = proportion of voters favoring Biden
θ3 = proportion favoring other candidates

Additionally, suppose that an exit poll
found that out of n = 2104 voters:

y1 = 945 supported Trump
y2 = 1021 supported Biden
y3 = 138 supported other candidates

If we use a flat prior, what is the posterior distribution for (θ1, θ2, θ3)?

p(θ⃗|y⃗, α⃗) = Dirichlet(y1 + α1, y2 + α2, y3 + α3)
= Dirichlet(945 + 1, 1021 + 1, 138 + 1)
= Dirichlet(946, 1022, 139)

What is the posterior distribution for θ1?

p(θ1|y⃗, α⃗) = Beta(y1 + α1, (y2 + α2) + (y3 + α3))
= Beta(946, 1022 + 139)
= Beta(946, 1161)

Suppose we wanted to know the posterior probability that Biden had more support than Trump. What do we want
to estimate, and how could we estimate it with a 95% posterior interval?

p(θ2 > θ1) ⇒ P (θ2 − θ1 > 0)

95% Credible Interval for θ2 − θ1

[−0.004677508, 0.07740148]
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Normal Model

When dealing with a normal model, we typically have data y1, ..., yn ∼ N(µ, σ2) where both µ and σ2 are unknown.
Since our goal is to always make inference on the unknown parameters, we are generally interested in looking to
determine the joint posterior distribution p(µ, σ2|y). Practically, we will do this iteratively in order to draw inference
on µ and σ2 individually in order to simplify inference. First, we need to determine our posterior distribution,
p(µ, σ2|y. Then, we factor this into two pieces: p(µ|σ2, y)p(σ2|y). From here, we can determine the marginal
posterior of µ as p(µ|y) and the posterior predictive distribution, p(ỹ|y). Note:

p(µ, σ2|y) = p(y|µ, σ2)p(µ, σ2)
p(y)Joint Prior: p(µ, σ2) = p(µ|σ2)p(σ2)

Posterior: p(µ, σ2|y) ∝ p(y|µ, σ2)p(µ, σ2) = p(y|µ, σ2) p(µ|σ2)p(σ2)

p(y|µ, σ2) ∝ (σ2)
−n

2 exp
{

−
∑n

i=1(yi − µ)2

2σ2

}
The prior distribution can equivalently be written as p(µ, σ2) = p(µ|σ2)p(σ2)

Uninformative Prior In conducting our posterior inference, we must first decided on our prior. Let’s begin
by considering the case of an uninformative prior. As previously discussed for the single parameter models, using
p(µ) = N (0, 1) and p(σ2) = 1

σ2 . Combining these two pieces gives a joint prior of p(µ, σ2) = 1σ2

µ|σ2, y ∼ N (0, ∞) =⇒ Constant

σ2 ∼ Inv-Gamma(0, 0) = 1
σ2

p(µ, σ2) = p(µ|σ2)p(σ2) ∝ c · 1
σ2 = 1

σ2 =⇒ Joint Prior

Let’s use this to calculate the joint posterior density:

p(µ, σ2|y) ∝ p(y|µ, σ2)p(µ, σ2)

∝

[
n∏

i=1

1√
2πσ2

e− (yi−µ)2

2σ2

]
1
σ2

∝ (��HH2πσ)− n
2 · exp

{
−
∑

(yi − µ)2

2σ2

}
· (σ2)−1

∝ (σ2)−( n
2 +1) · exp

{
−
∑

(yi − µ)2

2σ2

}
∝ (σ2)−( n

2 +1) · exp
{

−1
2σ2

n∑
i=1

(
(yi − ȳ) + (ȳ − µ)

)2
}

∝ (σ2)−( n
2 +1) · exp

{
−1
2σ2

n∑
i=1

(
(yi − ȳ)2 + 2(yi − ȳ)(ȳ − µ) + (ȳ − µ)2)}

∝ (σ2)−( n
2 +1) · exp

{
−1
2σ2

(
n∑

i=1
(yi − ȳ)2 +

���������XXXXXXXXX
2(ȳ − µ)

n∑
i=1

(yi − ȳ) + n(ȳ − µ)2

)}

Joint Posterior: ∝ (σ2)−( n
2 +1) · exp

{
−1
2σ2

(
(n − 1)S2 + n(ȳ − µ)2)} Where

S2 = 1
n

n∑
i=1

(yi − ȳ)2
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We now want to factor this into two pieces: p(µ|σ2, y) × p(σ2|y)

p(µ, σ2|y) = p(µ|σ2, y)p(σ2|y)

We begin by first finding the distribution of p(σ2|y) (Marginal Posterior)

p(σ2|y) =
∫

p(µ, σ2|y)dµ

∝
∫

(σ2)−( n
2 +1) · exp

{
−1
2σ2

(
(n − 1)S2 + n(ȳ − µ)2)} dµ

∝ (σ2)−( n
2 +1)

∫
exp

{
−(n − 1)S2

2σ2

}
exp

{
−n(ȳ − µ)2

2σ2

}
dµ

∝ (σ2)−( n
2 +1)exp

{
−(n − 1)S2

2σ2

}∫
exp

{
−n(ȳ − µ)2

2σ2

}
dµ

∝ (σ2)−( n
2 +1)exp

{
−(n − 1)S2

2σ2

}√
2πσ2/n

∫ 1√
2πσ2/n

exp
{

−(µ − ȳ)2

2σ2/n

}
︸ ︷︷ ︸

Kernel of N (ȳ, σ2
n )

dµ

∝ (σ2)−( n
2 +1)exp

{
−(n − 1)S2

2σ2

}
· (σ2) 1

2

∝ (σ2)−( n−1
2 +1)exp

{
−(n − 1)S2

2σ2

}
=⇒ Inv-Gamma

(
n − 1

2 ,
(n − 1)S2

2

)
= Inv-χ2(n − 1, S2)

Then, we obtain the distribution of p(µ|σ2, y). (Conditional Posterior)

p(µ|σ2, y) = p(µ, σ2|y)
p(σ2|y) ∝ p(µ, σ2|y)

∝������XXXXXX(σ2)−( n
2 +1) · exp

{
−1
2σ2

(
(n − 1)S2 + n(ȳ − µ)2)}

∝
�����������XXXXXXXXXXX
exp

{
−1
2σ2

(
(n − 1)S2)}exp

{
−1
2σ2 (n(ȳ − µ)2)

}
∝ exp

{
−n(ȳ − µ)2

2σ2

}
= exp

{
−(µ − ȳ)2

2σ2/n

}
=⇒ N (ȳ, σ2/n)

How do we actually draw inference on µ and σ2 in practice?
We only know y and n. However...
We need to know σ2 to draw a conclusion about µ.

Procedure:
1. Draw a sample of σ2 from its posterior =⇒ σ2|y ∼ Inv-χ2(n − 1, S2)
2. Use the sampled value of σ2 from step 1 to draw a µ from its posterior

⇒ µ|σ2, y ∼ N
(
ȳ, σ2/n

)
3. Repeat steps 1 and 2 many many many times
4. Summarize the posteriors by summarizing the samples of µ and σ2 (mean, histograms,

quantiles, etc...)
5. For the posterior predictive distribution, sample from the likelihood using the sampled

values of µ and σ2
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While it is useful to know the conditional posterior distribution of p(µ|σ2, y), we generally are more
interested in determining the marginal posterior distribution of p(µ|y). This marginal posterior
distribution allows us to draw inference directly on the mean of the distribution without having to
worry about σ2. Often times, even when there are multiple unknown parameters, we primarily are
concerned with drawing conclusions about one particular parameter, or at least for one parameter
at a time. Because of this, we want to marginalize out the effect of any nuisance parameter so we
have theposterior distribution of the parameter of interest. In the case of thenormal example, we
are at the point where we want to be able todraw inference about µ by itself, so we σ2 becomes a
nuisance parameter that we need to marginalize out. We do this by integrating over all possible
values of σ2.

p(µ|y) =
∫

p(µ, σ2|y)dσ2 ∝
∫

(σ2)−( n
2 +1) · exp

{−1
2σ2

(
(n − 1)S2 + n(ȳ − µ)2

)}
dσ2

= Kernel of Inv-Gamma
(

n

2 ,
(n − 1)s2 + n(ȳ − µ)2

2

)
Since this is the kernel of a probability distribution, we know that when
multiplied by a normalizing constant it must integrate to one. As a result
of this, we can rewrite this integral as the reciprocal of the normalizing
constant of the Inv-Gamma distribution.

=
Γ( n

2 )(
(n−1)s2+n(ȳ−µ)2

2

)n/2 ∝ Γ
(

n

2

) (
(n − 1)s2

)− n
2

(
1 + 1

n − 1

(
(µ − ȳ)2

s2/n

))− n
2

This is the pdf of a tn−1 distribution!

µ|y ∼ tn−1

(
ȳ,

s2

n

)
µ − ȳ√

s2/n
∼ tn−1

If we want to make posterior predictions for future values, we can similarly determine the posterior
predictive distribution by integrating out all parameters:

p(ỹ|y) =
∫ ∫

p(ỹ|µ, σ2, y)p(µ, σ2|y)dµ dσ2

By similar methods as to what was used above, we can first integrate out µ to get p(ỹ|σ2, y) ∼

N
(

ỹ,
(n + 1)σ2

n

)
. If we then integrate out σ2, we are left with p(ỹ|y) ∼ tn−1

(
ỹ,

(n + 1)s2

n

)
Overall, we have thus found the following:

Conditional
Approach:

p(σ2|y) = Inv-Gamma
(

n − 1
2 ,

(n − 1)s2

2

)

p(µ|σ2, y) = N
(

ȳ,
σ2

n

)

Marginal Approach: p(µ|y) = tn−1(ȳ,
s2

n
)

Recall that the t distribution takes the following form:

P (θ|µ, σ2, ν) =
Γ
(

ν+1
2

)
Γ
(

ν
2

) (
νπσ2

)− 1
2

1 + 1
ν

(
θ − µ

σ

)2
−( ν+1

2 )
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Example How long do guests usually stay in Las Vegas? Based on the sample of 100 guests, you
find that the average length of stay is 4.1 nights, with a standard deviation of 3.2 nights. Suppose
you have no previous information about the length of stays and use an uninformative prior. What
is the probability that the average length of stay is longer than 5 nights?

Using A Conjugate Prior Let’s again consider a normal model with unknown mean and variance.
In this case we have that:

y1, y2, ..., yn ∼ N (µ, σ2)
Instead of placing an uninformative prior of p(µ, σ2), let’s use a conjugate prior. To do this, we
need to break up our prior into its two pieces.

p(µ, σ2) = p(µ|σ2)p(σ2)

We will assign priors as follows:

µ|σ2 ∼ N
(

µ0,
σ2

κ0

)
σ2 ∼ Inv-χ2(ν0, σ2

0)
= Inv-Gamma

(
ν0

2 ,
ν0σ

2
0

2

) Where...
µ0 = prior mean
κ0 = prior sample size
ν0 = prior degrees of freedom
σ2

0 = prior scale of σ2

In the joint prior µ, and σ2 are thus dependent on each other. If σ2 is large, then the prior for µ will
also have large variability. In other words, the variance of the prior is consistent with the sampling
variability of y.
Putting these pieces together gives the joint prior:

p(µ, σ2) = p(µ|σ2)p(σ2)

∝ (σ2)− 1
2 exp

{−1
2σ2

(
κ0(µ − µ0)2

)}
· (σ2)− ν0

2 +1exp
{

−ν0σ
2
0

2σ2

}

∝ (σ2)−( ν0
2 +1)exp

{−1
2σ2

(
κ0(µ − µ0)2 + ν0σ

2
0

)}
=⇒ Kernel of Normal-Inverse χ2

(
µ0,

σ2
0

κ0
, ν0, σ2

0

)

This distribution is the creatively-named Normal-Inverse χ2 distribution with parameters µ0,
σ2

0
κ0

, ν0,

and σ2
0. Now that we have our likelihood and our prior, we can determine our joint posterior:

p(µ, σ2|y) ∝ p(y|µ, σ2)p(µ, σ2)

∝
[

n∏
i=1

(σ2)− 1
2 exp

{
−(yi − µ)2

2σ2

}] [
(σ2)−( ν0

2 +1)exp
{−1

2σ2

(
κ0(µ − µ0)2 + ν0σ

2
0

)}]
Likelihood Prior

∝ (σ2)− n
2 exp

{
−1
2σ2

(
n∑

i=1
(yi − µ)2 + κ0(µ − µ0)2

)}
· (σ2)−( ν0

2 +1)exp
{

−ν0σ
2
0

2σ2

}

∝ (σ2)−( ν0+n+1
2 +1)exp

{
−1
2σ2

(
(κ0 + n)

(
µ − κ0µ0 + nȳ

κ0 + n

)2
+ ν0σ

2
0

)}

=⇒ Kernel of Normal-Inverse χ2
(

µ0,
σ2

0
κ0

, ν0, σ2
0

)
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From here, we can again decompose into two pieces: p(µ|σ2, y) and p(σ2|y):
p(µ, σ2|y) = p(µ|σ2, y)p(σ2|y)

Conditional
Approach:

p(σ2|y) = Inv - Gamma
(

νn

2 ,
νnσ2

n

2

)
= Inv-χ2(νn, σ2

n)

p(µ|σ2, y) = N
(

µn,
σ2

κn

)

Marginal Approach: p(µ|y) = tn−1

(
µn,

σ2
n

κn

)

Where:
µn = κ0µ0 + nȳ

κ0 + n
κn = κ0 + n

νn = ν0 + n

σ2
n =

ν0σ
2
0 + (n − 1)s2 + κ0n

κ0+n
(ȳ − µ0)2

ν0 + n

Regression - A Special Case of the Normal Model
Suppose we have a simple linear regression model for a random sample of n observations where we
are trying to predict the response y based on a single predictor x (which is take to be fixed and
known). In this case we have the general form for the regression model:

yi = α + βxi + ϵi for i = 1, 2, ..., n

In this notation, (xi, yi) is the data for observation i, α is the intercept, β is the population slope,
and ϵi is the error term for observation i. We usually assume that the errors are normally distributed
with mean 0 and variance σ2. You may assume exchangeability. We therefore have the following
likelihood:

yixi, α, β.σ2 ∼ N (α + βxi, σ2) for i = 1, 2, ..., n

Our goal is ultimately to make inference on α, β, and σ2. To start, we therefore set some prior
distribution on these parameters, which we can do as follows:

p(α, β, σ2|x) ∝ 1
σ2

We can calculate the joint posterior distribution, p(α, β, σ2|x, y) as follows:
p(α, β, σ2|x, y) ∝ p(y|α, β, σ2, x)p(α, β, σ2|x)

∝
[

n∏
i=1

(σ2)− 1
2 exp

{−1
2σ2 (yi − (α + βxi))2

}] 1
σ2

= (σ2)−( n
2 −1)exp

{
−1
2σ2

n∑
i=1

(yi − (α + βxi))2
}

Joint Posterior: = (σ2)−( n
2 −1)exp

{
−1
2σ2

(
β2

n∑
i=1

x2
i − 2β

n∑
i=1

xiyi + nα2 − 2αnȳ + 2αβnx̄ +
n∑

i=1
y2

i

)}
We can decompose this into its pieces, calculating first p(σ2|x, y)

p(σ2|x, y) =
∫ ∫

p(α, β, σ2|x, y)dα dβ

p(σ2|x, y) = Inv-Gamma
(

n − 2
2 ,

∑(yi − ŷ)2

2

)
where: ŷ = α̂ + β̂xi

β̂ = rSy

Sx

α̂ = ȳ − β̂x̄
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Then p(β|σ2, x, y) ∝
∫

p(α, β, σ2|x, y)dα

∝
∫

(σ2)−( n
2 −1)exp

{
−1
2σ2

(
β2

n∑
i=1

x2
i − 2β

n∑
i=1

xiyi + nα2 − 2αnȳ + 2αβnx̄ +
n∑

i=1
y2

i

)}
dα

∝ ������XXXXXX(σ2)−( n
2 −1)exp

{
−1
2σ2

(
β2

n∑
i=1

x2
i − 2β

n∑
i=1

xiyi +
�
�

��@
@

@@

n∑
i=1

y2
i

)}∫
exp

{−1
2σ2

(
nα2 − 2αnȳ + 2αβnx̄

)}
dα

∝ c ×
∫

exp
{−1

2σ2

(
nα2 − 2αnȳ + 2αβnx̄

)
+(ȳ − βx̄)2

}
exp

{−n

2σ2 (−(ȳ − βx̄)2)
}

dα

where c = exp
{

−1
2σ2

(
β2

n∑
i=1

x2
i − 2β

n∑
i=1

xiyi

)}

∝ exp
{

−1
2σ2

(
β2

n∑
i=1

x2
i − 2β

n∑
i=1

xiyi

)}
× exp

{−n

2σ2 (−(ȳ − βx̄)2)
}

∝ exp
{

−1
2σ2

(
β2

n∑
i=1

x2
i − 2β

n∑
i=1

xiyi + n(ȳ − βx̄)2
)}

∝ exp

−(∑x2
i − nx̄2)

2σ2

(
β −

∑
xiyi − nx̄ȳ∑
x2

i − nx̄2

)2


=⇒ p(β|σ2, x, y) = N
(∑n

i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx̄2 ,
σ2∑n

i=1 x2
i − nx̄2

)

And finally p(α|β, σ2, x, y)

∝ p(α, β, σ2|x, y)

∝ ������XXXXXX(σ2)−( n
2 −1)exp

{
−1
2σ2

(
�
�
�
��Z

Z
Z
ZZ

β2
n∑

i=1
x2

i

��
���

��H
HHH

HHH

−2β
n∑

i=1
xiyi + nα2 − 2αnȳ + 2αβnx̄ +

�
�

��@
@

@@

n∑
i=1

y2
i

)}

∝ exp
{−1

2σ2

(
nα2 − 2αnȳ + 2αβnx̄

)}

∝ exp
{−n

2σ2

(
α2 − 2α(ȳ − βx̄)

)}
(Complete the Square)

∝ exp
{−n

2σ2

(
α2 − 2α(ȳ − βx̄) + (ȳ − βx̄)2

)}

= exp
{−n

2σ2 (α − (ȳ − βx̄))2
}

=⇒ p(α|β, σ2, x, y) = N
(
ȳ − βx̄, σ2

n

)
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