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Single Parameter Models

2.1 - The Binomial Model

Consider a model for y as the number of successes out of n trials, with P(success) = 6. In this case we have the
following likelihood

p(yl0) = y 0U(1—0)""

We want to find a posterior distribution for 6. In order to calculate a posterior distribution we need two things:

1. Likelihood: = p(y|0)
2. Prior Distribution: = p(6)

We begin with models that have a binomial likelihood, as stated above. Our prior distribution describes 6, which in
this case, is a probability and as such is defined on the range [0,1]. The simplest prior distribution we can use is a
uniform prior.

Uniform Prior :

In the case that we do not have any prior information about what we think # may be. The uniform distribution
reflects this by having all values of § be equally likely p(#) = 1. This is called an uninformative prior. Thus, we
have all of the pieces we need to derive our first posterior distribution:

p(0ly) o< p(y|0)p(0) p(0ly) = W
p(y) = /p(y,@)do = /p(ylﬁ)p(H)dG = /(Z)gy(l —9)" % (1) do

= (” /0@/(1 — )"V dl = <ﬂ) /9(y+1)—1(1 _0)(nfy+1)—1 do
y y

M\ Ty+Dl(n—y+1)
- () =

ply) (n> Tly+DI'(n—y+1)
Y I'(n+2)

p(9|y) _ p(y]60)p(0) (y) 6v(1 — 6y

I'(n+2) _ 1
_ 9y+1 1 1 =0\ y+1-1
MNy+1H'(n—y+1) ( )
= Beta(y+1, n-y+1))

Thus it is clear that a binomial likelihood with a uniform prior yields a beta posterior distribution.

Prior: 6 ~ Beta(d| 1, 1)
Likelihood: y|6 ~ Binomial(n, 6)
Posterior: p(fly) = Beta(a +1, n—y+ 1)

Binomial Model
with Uniform Prior
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Informative Priors :

The posterior distribution resulting from a uniform prior is a beta distribution. Conveniently enough, the uniform
distribution is just a special case of the beta distribution when a =1 & =1

F(Oz—FB) o . ifa=1& g =1:
F(a)F(B)e (-0 P11, 1) =

I'(n) is the Gamma Function. If n is a positive integer then I'(n) = (n — 1)!. Otherwise, for any positive value of

n we get I'(n) = / " e %dx
0

p(0le, B) =

Above, we used a uninformative prior, but since the uniform distribution is just a special case of the beta distribution,
if we want an informative prior we can simply use a different beta distribution! This is due to the fact that the
beta distribution is defined on [0, 1] which lines up with the domain of 8, since 6 is a proportion.

Prior: 6 ~ Beta(f| a, 3)

Likelihood: y|0 ~ Binomial(n, )
Posterior: p(fly) = Beta(a+y, B+n—y)

Binomial Model
with Beta Prior

Conjugacy :

For the binomial model with a beta prior, the posterior distribution itself will always be a beta distribution. When the
prior and posterior both follow the same distribution we say there is conjugacy. In particular, a prior is conjugate
when the posterior distribution follows the same parametric form as the prior. This occurs when the prior follows
the same functional form as the likelihood. This is similar to the idempotent from linear algebra.

In other words, multiplying a distribution by a conjugate prior produces a distribution with the same kernel as the
conjugate distribution. The kernel of a distribution is a reduced version of its probability density function which
drops any terms that do not contain the variable(s) of interest (i.e. with the pdf with no normalizing constants).
Conjugate priors make the process of calculating the posterior distribution much easier.

For the binomial likelihood with a beta prior, determine the posterior mean. How does this posterior mean relate to
the prior mean the mean from the likelihood?

13
Oly ~ Beta(y + a, n—y+ ) = E[Beta(13,9)] = aiﬂ = 55 = 059
Ee T T Y+ _ Y+« _ Y n Q
[ly] a+f Y+a+n—y+p n+t+a+f nt+a+pf n+a+p
_ _ny n _atf _«a
a n+a+fn n+a+Ba+p
n a+pj .
= — | (data mean) + | —— rior mean
<n+a+ﬁ)( ) <n+a+5>(p )

From this, we can loosely interpret a — 1 as the prior number of successes, 5 — 1 as the prior number of failures, and
a total prior sample size of a + 5 — 2.

Summarizing Posterior Inference :

We can summarize the procedure we have established as follows:

Look at data to determine likelihood
Determine appropriate conjugate prior
Calculate posterior distribution
Summarize posterior distribution

— mean
— credible interval
— plot distributions

Ll e
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Posterior Predictive Distribution :

Now that we have determined the posterior distribution, we are interested in making predictions about future values of
y. Which means we need to calculate the posterior predictive distribution, p(7|y). Let’s compute the probability
that a future observation will be a success:

m = new sample size n = original sample size

7 = new number of successes y = original number of successes

P@:uw:/P@:mew:/f@:uawpmww

/ P(y )P (0|y)do = P(y=1]¢) = Binomial(1,0) = Likelihood

P(fly) = Beta(y+a, n—y+ ) = Posterior Distribution

/ Mg M L(n+a+p) guta=l(] _ gyn-v+i-1lgg

Ly+a)(n—y+p3)

F'(n+a+p) / oyt
gyta+i- 1 1— @)y vt6-149
T(y+ )l —y + 5) )

I'(n+a+p) IF'y+a+1)I'(n—y+p) /1 Pn+ta+pB+1) pltat=1(1 _ g)(n-v+5)-1gp
I(y+a)l(n—y+p) 'n+a+p+1) o Tly+a+1)I(n—y+p)

Beta density function, so it must integrate to 1

B L'(n+a+p) Iy + o+ 1)Tm=—y=05) e
=T+ alC=—y=B)  Tntoa+htl) _{““wﬁﬂ>—< 1!]

(n+a+p-1) (y+oz)!: (n ' (y + o) ([gz=a=11
(y+a—1)! (n+a+p)! M(TL+O{+B)M

y+a Total Successes E[9|y]

n+a+p3  Total Sample Size

g ~ Binomial(m =1, ) <= Bernoulli(9)
Property of the Bernoulli distribution
p(g = 1ly) = E(gly)

Law of Total Expectation

Example : =E[E(7]0,y)|y]
In 2024, the top spot on the Billboard Hot 100 chart was held by ) []E(mg) |y]
female lead artists 12 times (with the remaining 40 weeks being

held by male artists). Overall, we are interested in determining _ E(9|y) _ _yto
the probability that a female artist holds the top spot on the Bill n+a+p

-board Hot 100. Is a binomial model appropriate for this scenario?
= No! Since the weeks are not independent with one another.
Which means the probability of success changes with each
week, and as such these observations are not exchangeable!

290 Rochesterians received an Instagram advertisement for Restaurant Good Luck. 44 of the 290 people clicked
on the ad. We are interested in determining the proportion of people who will clock on the Good Luck link. Is a
Binomial model, as we have discussed, appropriate for this scenario?

= Yes! Since each observation is binary, independent of the other observations, and has the same probability
of success, the binomial model is appropriate for our analysis.

Let 6 be the proportion of people who click on the Good Luck ad. Assuming a uniform prior distribution for 6.
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What is the posterior distribution for 67
y|6 ~ Binomial(n = 290, 0) 6 = P(clicking on an ad)
6 ~ Beta(l,1)
0ly ~ Beta(y + a, n —y+ () = Beta(44 4+ 1, 290 — 44 + 1)

= | Beta(45, 247)

What is the posterior mean and standard deviation of 67

W« a 45 4
Bl =" 055" = yomr — 293 ~ 0104
Y 7 rmul a . (45)(247) -
SDPly) = vVily) = \/ (a+B)2(a+B+1) \/(45 +247)2(45 + 247 + 1) 0.0211

Find a 95% posterior interval for 6 using normal approximation.

E[f]y] + 1.96 x /V[0[y]
0.1541 + 1.96(0.0211) = (0.1127, 0.1955)

Find a 95% posterior interval for 6 using the quantiles.

gbeta(c(0.025,0.975), 45, 247) = (0.1151, 0.1976)
“We are 95% confident that the true value of 8 is between 0.1151 and 0.1955.”

Suppose that you see 10 of your friends have Good Luck ads, and you expect about 20% of them to click on it. Use
this to get an informative prior distribution.

Three Methods: 20%clicked = expected 2 successes and 8 failures
=2 —1=2 = 02=%=>a=24
Beta(2,8) { Beta(3,9) { —a=3 Beta(2.4,9.6) iz
=8 b—1=8=p=9 E[Q}zm:ﬁzQ.G

% This method is preferable %
If these three priors produce drastically different posterior that may be indicative that you need to collect more data.

Using the uniform prior distribution, what would be predict for the probability of a future Instagram user clicking

on the Good Luck ad?
p(fly) = Beta(45, 247) m =1

45
0= 1ly) = El0ly] = —2 ~0.1541
p(g = 1ly) = E[0]y] 593 ~ 015

Suppose from a previous study, 3 out of 12 people click on the ad. How can we use this information to obtain an
informative prior?

a — 1 = prior number of successes a—1=3=a=14

= Beta(4, 10
B — 1 = prior number of failures B-1=9=8=10 } eta( )

2.2 Exponential Family Distributions

The binomial distribution is an example of an exponential family distribution. Generally, exponential family
distributions take the following form:

p(yil0) = F(y:)g(0)e?® ulv:)

n

@(0) is called the natural parameter. t(y) = Zu(yl) is called the sufficient statistic for 6, meaning that it

i=1
contains all the information we need to make inference about 6. Generally, exponential family distributions are the
only ones to have natural conjugate priors.



February 22, 2025 2.3 Poisson Model - 5

2.3 Poisson Model

Suppose we have some measurement that has whole number values, such as number of siblings, or number of courses
taken during college. This data could be model by a Poisson distribution.

6

p(yl6) = =5

If we have n measurements, all of which are Poisson distributed, we can calculate the joint distribution as follows:

n

|
P15 ynl0) = ngyze 0

i=17"
x eny e—n@
For this Poisson setup, ) _.y; is a sufficient statistic for 6, and, >, v;|0 ~ Poisson(n#). What form must the prior
have to be conjugate?
—O0\"™ pt(y)-In(6
p(910) o (e7)" 61 0
If we have n = 1 measurement, show that the posterior distribution is 8|y ~ Gamma(a +y, S+ 1).

(lo)p(0) _ 310" im0 e

_D _
Py %ﬂa/ay—i—a—le—(lﬁ-,@)ede
+a—1,-0(14+8) (B+1)Y
_ 0v € x I'(y+a) — (5 + 1)y 9y+a—le—9(1+ﬂ)
y+a—1_—(14+3)0 (6 + 1)y F(y + Oé)
0 e df x ———
Iy + «)

= Gamma(y + a, §+1)

Let’s now consider the more general case of n observations. In this case, and using a Gamma(a + y, () prior, we
have the following posterior distribution:

0 p 6 19 6_9 _1 papa—1,-p56
sy dn p9 Hz 1 1 F( )ﬁ 9 e
p( |y17~~~7yn)— (yl Yy | ) ( )_ ( Yi )( a )

p(y17"'ay7) a " yita—1_—(n [
D e [

n 1y ,—0 aga—1 —,@9 " 1‘,4’01*1 _o(n B4n)"¥
(ﬁ%ﬁ@” ) (ﬁ(ﬁ ) 621" Onts) 5 G
MM/QZ, QYita—l —(n+B)0 19 /921 L vita=1,—(n+8)0 g9 « (ﬁ—l—n)"y

I'(ny + a)

Gamma pdf; must instegrate to one
— (ﬁ + n)”@—i—aeng—i-a—le—ng—ﬂ@ _ (6 + n)n@-‘roz 9n§+a—1e—9(n+ﬁ)
I(ny + ) L(ny + «)
= Gamma(ny + a, B+ n)

What is the posterior expected value of 67

Recall: If X ~ Gamma(a, j) _
o —  Efgly="L°
E[X] = 3 B+n

[ can be interpreted as the prior number of observations. & — 1 can be interpreted as the the sum of counts from /3
prior observations.

Prior: 6 ~ Gamma(a, f3)
Likelihood: y|6 ~ Poisson(6)
Posterior: p(fly) = Gamma(a + ny, 8+ n)

Poisson Model
with Gamma Prior
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If we are interested in making predictions based on this model, we then would need to calculate the posterior
predictive distribution.

p(g — 1|y) — / p(g = ]_7 H\y)de = / p(g = 1|0, y) p(9|y) db of the posterior predictive distribution
0 0 "
“likelihood”  “prior”
oo ny,—0 «@ « 00
_ / 0ve™" go—1o-80 gy — s / guta—1l,—(B+1)8 g
' T T —
0 Y (a) y (Oé) 0 Kernel of Gamma
Distribution
_ B T(a+vy) /00 (B+1)yte guta— o~ (810 g _ B> T(a+y)
y(e) (B+ 1)+ Jy  Tla+y) y!l'(a) (B+ 1)ty

pdf of Gamma(Oé + v, B + 1),

Must Integrate to 1

This is a negative binomial distribution with parameters (« + 3y;, 8+ n).

The mean and variance of this distribution are:

Negative Binomial(a, ) :

Example : Suppose we want to model the number of people who use a Netflix account. You know that for your
personal account, there are 5 people who use it to watch Netflix. You then conduct a study where you examine
n = 22 premium Netflix accounts. There are, on average y = 4.5 people using an account. We want to draw inference
on the average number of people using an account. It is reasonable to assume that y;|0 ~ Poisson(6).

What is an appropriate conjugate prior for 67
0 ~ Gamma(6, 1)

« — 1 = Prior number of events

B = Prior number of intervals
What is the posterior distribution?

y; = number of people using a particular account

0 = expected number of people using an account

0ly ~ Gamma(a + ny, 8+ n)
= Gamma(6 + 22(4.5), 1+ 22) = Gamma(105, 23)

What is the posterior mean?
ny+ao 105
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Example : Suppose that causes of death are reviewed in detail for a city in the United States for a single year. It
is found that 3 persons, out of a population of 200,000, died of asthma, giving a crude estimated asthma mortality
rate in the city of

m x 100,000 = 1.5 cases per 100,000 persons per year.

A Poisson sampling model is often used for epidemiological data of this form. The Poisson model derives from
an assumption of exchangeability among all small intervals of exposure. Under the Poisson model, the sampling
distribution of y, the number of deaths in a city of 200,000 in one year, may be expressed as y ~ Poisson(2.00),
where 0 represents the true underlying long-term asthma mortality rate in our city (measured in cases per 100,000
persons per year). In this notation, y = 3 is a single observation with exposure z = 2.0 (since 6 is defined in units
of 100,000 people) and unknown rate §. We can use knowledge about asthma mortality rates around the world to
construct a prior distribution for § and then combine the datum y = 3 with that prior distribution to obtain a
posterior distribution.

Setting up a Prior Distribution: Reviews of asthma mortality rates around the world suggest that mortality
rates above 1.5 per 100,000 people are rare in Western countries, with typical asthma mortality rates around 0.6 per
100,000. Trial-and-error exploration of the properties of the gamma distribution, the conjugate prior family for this
problem, reveals that a # ~ Gamma(3.0, 5.0) density provides a plausible prior density for the asthma mortality rate
in this example if we assume exchangeability between this city and other cities and this year and other years. The
mean of this prior distribution is 20
e .
E[6] = 550" 0.6,

Furthermore, 97.5% of the mass of the density lies below 1.44. In practice, specifying a prior mean sets the ratio
of the two gamma parameters, and then the shape parameter can be altered by trial and error to match the prior
knowledge about the tail of the distribution.

Posterior Distribution: As shown above, the posterior distribution of 6 for a Gamma(a, 8) prior distribution
is Oy ~ Gamma(a + y, 8 + x).

With the prior distribution and data described, the posterior distribution for 6 is 8|y ~ Gamma(6.0, 7.0), which has

mean 6 O
E[fly] = —— = 0.86.
[0]y] =0

Substantial shrinkage has occurred toward the prior distribution. The posterior probability that the long-term death
rate from asthma in our city is more than 1.0 per 100,000 per year, computed from the gamma posterior density, is
P(6 > 1.0) =~ 0.30.

Posterior Distribution with Additional Data: To consider the effect of additional data, suppose that ten
years of data are obtained for the city in our example, instead of just one, and it is found that the mortality rate of
1.5 per 100,000 is maintained. That is, we observe

y = 30 deaths over 10 years.

Assuming the population remains constant at 200,000, and assuming the outcomes in the ten years are independent
with a constant long-term rate 6, the posterior distribution of 6 is then

0y ~ Gamma(3.0 + 30, 5.0 + 20) = Gamma(33.0, 25.0).

Figure 2.5b displays 1000 draws from this distribution. The posterior distribution is much more concentrated than
before, and it still lies between the prior distribution and the data. After ten years of data, the posterior mean of 8
is

33.0

The posterior probability that 6 exceeds 1.0 is P(6 > 1.0) ~ 0.93.

This analysis shows that with additional data, the posterior estimate becomes more concentrated, reflecting increased
certainty in the inferred long-term mortality rate.



February 22, 2025 2.4 Normal Model - 8

2.4 Normal Model

The normal distribution is perhaps the most widely used distribution, describing the general distributional shape for
many situations. The normal distribution is used to model continuous random variables, and it has two parameters:

the mean, p, and variance o2.

For this distribution, we know that there is symmetry about w, and the mean, median, and mode all equal p.
Additionally, 95% of the population lies within 1.96 standard deviations of the mean. With the normal distribution,
there are nice properties regarding the combination of random variables.

In particular, if X ~ N(ux,0%) and Y ~ N(uy,0%) are independent, then aX + bY follows a normal distribution
with mean apx + buy and variance a?c% + b?c%. This property makes the normal distribution particularly useful
in statistical modeling and inference.

Unknown Mean and Known Variance: Suppose that we want to draw some conclusion regarding the
mean for a population. This was the primary goal of inference when conducting t-tests in frequentist statistics.
When we have a normally distributed population and want to draw a conclusion about its mean, we can determine
a Bayesian approach to alternatively meet this goal. We begin by assuming that Y ~ N (6, 02), where o is known.

Likelihood: If we have one observation of y, then we can write the normal distribution as follows:

pl01) = gz { Ut | e {500

Prior: What would be a conjugate prior for this normal likelihood?

272

Considered as a function of @, the likelihood is an exponential of a quadratic form in . Since we reaaaaaallllly want
conjugacy this can be expressed as a normal distribution with mean po and variance 72. This is a normal distribution
with mean 9 and variance 7¢.

x exp {_(9 —0o)* } — 0~ N(by,7?)

As with all Bayesian approaches, we want to incorporate data with our prior information to get a better understanding
of what we believe 6 to be. Thus, our goal is to determine the posterior distribution for 6. Recall that:

p(0ly) o< p(y|0)p(0)- = p(0ly, ) o p(yl0, 0*)p(6).
Since we have two parameters in the normal model, with one of them (c2) being known.
Let’s derive the posterior distribution:
p(0ly) < p(ylO)p(0) = N(0,0%) x N'(0p,7%)
cenp { D e { SO o {00, 000
—(y = 6)*7% — (0 — 6)*0”

20272

} ; complete the squares

—%r2 | = 20yT? |+ | 0272 | +| 0%6% |+ 200002 | — 6’802

20272

20272

(% +0?) 92 _ 29 <y72 +9002) + y*ri4 636
/‘T)Z/—i-}?\
since we are using proportionality,

T this can be treated as a constant &
thus, it can be dropped from the kernel

T2 4 02

7-2_*_0-2 T2+0-2 7'2+0'2

{ 02(7% 4+ %) | —| 20(y7? + 0pc?) |+ | y* 12 + 02 0?

7(72+02) (9 (y72+9002>>2} ~ p(9|y)N/\/<T2y+0280 o272 >
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We will continue exploring this distribution in a homework assignment to better conceptualize the meaning of the
mean and variance and to determine the posterior predictive distribution.

Prior: 0~ N(6y, %)
Likelihood: y|0 ~ N(0, o?)

%42 1
Posterior: p(0ly) =N [ & n
7.72

Normal Model
with Normal Prior

M=[UE

71 n
o T2 + o2

Known Mean and Unknown Variance: In some situations, we may know the mean of a distribution
but not know what the variance is for it. This would be similar to conducting an F-test for equal variance in the
frequentist realm. Ultimately, we are going to want a model where both the mean and variance are unknown, since
that is realistic of situations we mainly encounter, but for now, we will consider the case of the mean known and
variance unknown as a stepping stone to the main inferential question.

If we take a sample of n exchangeable observations from the normal distribution with known mean g but unknown
variance o2, the likelihood function is:

n Y
p(y1, - s ynlo?) = _lj[p(yv:IUQ) =11 \/;T?QXP {(yQUQM)}

2\n —nY =
= (O' ) 2 €202 where v = fZ(y, —u)?
=1
Constant

The conjugate prior for this distribution is the inverse gamma distribution, which has two parameters: a shape
parameter and a scale parameter. We can choose a prior for o2 as IG(a,b). Here, a can be thought of as 1/2 the
approximate prior sample size, and b can be thought of as 1/2 of the prior sum of squared residuals. The inverse
gamma distribution is the distribution of the inverse of a gamma-distributed random variable.

2y _ B (. 2y—(a+1) ,— 2%
p(o?) = T(a) (o9) (atl)e™ 52
The posterior distribution for o2 is then:

p(02|y17 s 7yn) X p(y17 s 7Z/n|‘72)p(‘72)

x (0‘2)%6577121/ X (02)_(0‘“)6_%

\ 7 \ 7

~N"

Like;i,}lood Prior
(o) ()~ (2552)

2 2 1 o
x Inv-Gamma (n oo ﬂ) where v = — Z(% - p)?
n

2 7 2

i=1
Prior: o¢? ~ Inv-Gamma(ag, Bo)

Likelihood: y|o? ~ N (i, 0?)

Normal Model (n + 20 nv+ 26)

with Inverse-Gamma Prior Posterior: p(c%ly) ~ Inv-Gamma g 5
n

1
where v = — E (yi — p)?
n
i=1
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Normal Model for Non-Normal Data

In statistics, we like to use normal distributions for many different situations, particularly when drawing inference

on the mean of a distribution. Generally, because of the central limit theorem, we can say that regardless of the

distribution of y, ¥ will have a normal distribution with mean 6 and variance %2 so long as the sample size is large

enough.

This motivation for doing normal-based frequentists tests. We can similarly use sampling distributions as Bayesians
1 n

to apply a normal model.So long as the sample size n is large enough, we can say that y = — Zyl is normally
n

i=1
distributed (by the central limit theorem). Thus, we can use the following likelihood:

1 g —0)?
exp B 2)
o2 2%

From this, if we want to make inference for the mean 6, we can use a normal prior and get the following posterior:

_ M4l
p(aly)NN<n+17n 1)

When it comes to drawing inference for the variance, things get a bit more complicated, since we do need the
distribution of y itself to be normal in order to apply the methods as previously described.

p(ylo) =

2.5 Chosing Priors

We often want to use a prior that will play a minimal role in the posterior distribution. We colloquially call such
priors “noninformative” or “uninformative.”

In doing this, we are letting the data speak for themselves, which is particularly useful if we have no a priori
information regarding 6.For the binomial model, we discussed the uninformative flat prior of Beta(1,1). With the
Poisson model, an “uninformative prior” is usually chosen as Gamma(0.001,0.001). For the gamma distribution, we
cannot create a completely flat prior, but by having both hyperparameters o and § be close to 0, their effect on the
posterior is minimal.

Let’s revisit the normal model. Suppose we have y ~ N (6, 0?) for some known 2. A conjugate prior is 8 ~ N (0, 72)
What values of §p and 72 are uninformative? If we use this uninformative prior, what effect does this have on the
posterior distribution?

Let’s now consider the case of y ~ N(6,02) for known 6. In this case, we used a conjugate prior of sigma? ~
Inv-Gamma(ag, B9) What values of ag and Sy are uninformative?We can have the issue of an uninformative prior
being improper. Recall that a prior is improper if it does not integrate to 1 (or, more general, to a constant). There
isn’t necessarily anything wrong with using an improper prior so long as the posterior is still proper. If an improper
prior leads to an improper posterior, then we would not want to use that prior.

There are other methods for creating an uninformative prior. Perhaps the most standardized way is to use what we
call the Jeffreys’ prior. The Jeffreys prior is defined as p(0) < y/Z(0), where Z(0) is the Fisher information for
f. The Fisher information is a measure of the sensitivity of a maximum likelihood estimator, defined as being the
negative expectation of the second derivative of the log-likelihood, or:

Z(0) = —Ey %(lnp(yW)) =  J(0)=+/Z(0)

Considering the binomial model, what is the Jeffreys’ prior?



February 22, 2025 2.5 Chosing Priors - 11

p(y|#) = Binomial(n, 6) = (Z) gv(1 — )Y

2
Z(0) = —Ey [5)92 (lnp(yIH))}

Inp(y|f) = In (y> +ylné+ (n—y)In(l —0)
y
0

0 n—y
=5 | i) = % - 1=
ﬂ[g_”_y}:_ﬁ_ n—y
0l 1—0 02 (1-0)2
_ Yy n—y nb nfn9_ﬁ+ n
v T2 T (1—0)2] 2 T (1-02 0 1-90
n n n
10 =5+ 13" a1-9
_ n —9—n/2(1 _ p\)—"n/2
J(6) 01— 0) 0 (1-0)
— pn/2)-101 (n/2)—1 nmn
0 (1-6) ocBeta(2 2)

We thus have now have two different beta priors that are uninformative: Beta(1,1) and Beta(z, 1) In both cases,

we are saying that there are an equal number of success and failures a priori. A third option is to use the Beta(0, O)
prior, which is improper. Why is it improper?

Beta(0,0) < 0~ 1(1 —6)"*
. —1 : _ —1
%1_{%(9 ) = o0 & %1_{111((1 0)~") = o0

/1 61 (1—0)"tdo #1.0
0

While this is an reasonable choice to use, it may lead to the posterior distribution being improper if the observered
sample does not contain at least one success and one failure. This is because the posterior distribution will be
proportional to the product of the likelihood and the prior, and if the likelihood is 0, then the posterior will be 0.
This is why we generally prefer to use the Beta(1,1) or Beta(Q, 2) priors.

What is the Jeffreys prior for the normal distribution with unknown variance?
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What is Jeffreys’ prior for the normal distribution with unknown mean?

In some scenarios, we may want to have a “weakly informative prior.” For a weakly informative prior, we can either
start with an uninformative prior and add enough information so inference is reasonable. Or, you can start with an
informative prior and broaden it to account for uncertainty in your prior beliefs.

Example: Suppose y|0 ~ Binomial(n, #), and § ~ Beta(1,1). Let y; = 1 if subject ¢ has a disease, and suppose that
this disease is very rare (assume the prevalence is known 1 in 10,000).

If we collect n = 100 observations and y = 0 among these subjects, then the posterior mean will be 1—(1)2 ~ 0.01.
The “uninformative” prior is thus having a relatively large effect on the posterior. The better option would be to
incorporate previous information to better decide on o and S in the beta prior.
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