
Stat 217: Exam 2 Notecard
ANCOVA
Analysis of Covariance (ANCOVA) is a statistical technique
that combines aspects of both ANOVA and regression. It is
particularly useful when comparing treatment effects while
accounting for the influence of a continuous numerical vari-
able (covariate) that cannot be controlled in the experimental
design.

Data Structure: For the simplest ANCOVA with t treat-
ments, we have ni observations from the ith treatment as
pairs (Yij , Xij), where:

• j = 1, . . . , ni (observations within treatment)

• i = 1, . . . , t (treatments)

Full Model (Unequal Slopes):

Yij = µ+ τi + δiXij + ϵij

Where:

• µ: Overall constant (average Y-intercept across all re-
gression lines)

• τi: Adjustment to Y-intercept for the ith treatment’s
regression line

• δi: Slope of the ith treatment’s regression line

• Xij : Covariate (measured without error)

• ϵij : Independent normally distributed errors with
mean 0 and variance σ2

Equal Slopes Model:

Yij = µ+ τi + δXij + ϵij

Key difference: The slope δ is constant across all treatments.

Analysis Procedure:

1. First fit the full (unequal slopes) model

2. Test for equality of slopes (H0 : δ1 = δ2 = · · · = δt)

3. If the test is insignificant (slopes can be considered
equal), fit the equal slopes model and proceed with
comparison of treatment means

Interpretation (ANCOVA):

• The covariate X accounts for variability in Y that
would otherwise be attributed to error

• Treatment effects (τi) are adjusted for the covariate’s
effect

• When slopes are equal, treatment comparisons are
made at a common value of X

Principal Component Analysis
1. Normalize Data: Standardize each variable:

zij =
xij − x̄j
sj

where xij is the value of the j-th variable for the i-
th observation, x̄j is the mean, and sj is the standard
deviation of variable j.

When to Normalize: Normalization is necessary when
variables are measured on different scales, as PCA is
sensitive to scale differences. If all variables are already
on the same scale, normalization may not be required.

2. Compute Correlation/Covariance Matrix: De-
fine Σ as the covariance matrix:

Σ =
1

n− 1
XTX

where X is the standardized data matrix with n ob-
servations and p variables. If variables are on different
scales, use the correlation matrix instead.

3. Compute Eigenvalues & Eigenvectors: Solve

(Σ− λI)v = 0

where λk are the eigenvalues representing the variance
explained by each principal component (PC), and vk
are the corresponding eigenvectors defining the new ba-
sis.

4. Determine Number of Significant Components:
Choose m such that the cumulative variance explained
exceeds a threshold (e.g., 95∑m

k=1 λk∑p
k=1 λk

≥ 0.95

Scree plots visualize eigenvalues in descending order,
and an ”elbow” in the plot indicates the optimal m.
The Kaiser criterion suggests retaining components
where λk > 1.

Selecting too few components may lose important in-
formation, while too many may include noise. Cross-
validation can help confirm the optimal number.

5. Calculate PC Scores: Project data onto principal
components:

Z = XV

where Z is the matrix of principal component scores,
V is the matrix of eigenvectors (principal component
loadings), and X is the standardized data matrix. The
first m columns of Z serve as reduced-dimension rep-
resentations.

The transformed data in Z captures the most variance
with fewer dimensions, useful for visualization and fur-
ther modeling. Each row in Z represents an observa-
tion in the new principal component space.

Partial Least Squares Regression (PLSR)
Procedure

1. Initialization:

• Standardize predictors E0 = (X − X̄)/SX and
responses F0 = (Y − Ȳ )/SY

• Initialize Y-score u0 as first column of F0

2. Component Extraction (repeat for h = 1, ..., k):

(a) X-weights: wh = ET
h−1uh−1/∥ET

h−1uh−1∥
(Maximizes covariance with Y)

(b) X-scores: th = Eh−1wh

(c) Y-weights: ch = FT
h−1th/∥th∥2

(Regression weights for prediction)

(d) Y-scores: uh = Fh−1ch

(e) Check convergence: ∥tnew
h − toldh ∥ < ϵ

3. Store Parameters:

• X-loadings: ph = ET
h−1th/∥th∥2

• Regression coefficient: bh = uT
h th/∥th∥2

4. Deflation:

• Eh = Eh−1 − thp
T
h

• Fh = Fh−1 − bhthcTh
5. Prediction Equations:

• Multivariate: Ŷ = TBkC
T where T =

XW (PTW )−1

• Univariate: ŷ = XWk(P
T
k Wk)

−1bk

Key Features(PLS):

• Components: Choose k via cross-validation (minimize
MSE)

• VIP Scores:

VIPj =
√
p
∑k

h=1(b
2
hw

2
hj∥th∥2)/

∑k
h=1 b

2
h∥th∥2

(Variables with VIP > 1 are predictive)

• Advantages:

– Handles multicollinearity and high-dimensional
data (p≫ n)

– Focuses on Y-relevant X-variance

– More parsimonious than PCR for prediction

Key Properties

• PLS maximizes cov(Xw, Y c) (covariance between
components)

• Handles multicollinearity better than OLS

• Useful when p ≫ n (more predictors than observa-
tions)

• Components are orthogonal (uncorrelated)
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Bass Diffusion Model
The Bass Diffusion Model describes the adoption process of
new products in a market, analogous to epidemiological mod-
els of disease spread. It has wide applications across retail
services, industrial technology, agriculture, education, phar-
maceuticals, and consumer durable goods markets.

Model Foundation: The model is based on a hazard func-
tion representing the probability of adoption at time t given
it hasn’t occurred yet:

f(t)

1− F (t)
= p+ qF (t)

where:

• f(t) is the density function of time to adoption

• F (t) is the cumulative fraction of adopters at time t

Differential Equation Form: The adoption process is de-
scribed by:

dN(t)

dt
= p[m−N(t)] +

q

m
N(t)[m−N(t)]

with initial condition N(0) = 0, where:

• N(t) = cumulative number of adopters at time t

• m > 0 = total market potential (saturation point)

• p > 0 = coefficient of innovation (external influence)

• q ≥ 0 = coefficient of imitation (internal influence)

Solution: The closed-form solution to the differential equa-
tion is:

N(t;m, p, q) = m

(
1− e−(p+q)t

1 + q
p
e−(p+q)t

)

Key Parameters:

• m: Market size parameter determining the scale of de-
mand

• p: Innovation coefficient representing adoption due to
external influences (e.g., advertising)

• q: Imitation coefficient representing adoption through
word-of-mouth and social contagion

Interpretation (BASS):

• The first term p[m−N(t)] represents adoptions by in-
novators

• The second term q
m
N(t)[m − N(t)] represents adop-

tions by imitators

• Products with high p (e.g., 0.5) adopt quickly initially,
even with low q

• Products with low p (e.g., 0.0001) start slowly but may
accelerate with high q

• The relative values of p and q determine the shape of
the adoption curve

Behavioral Implications:

• When q > p, the adoption curve has an S-shape char-
acteristic

• When p > q, the curve resembles exponential decay

• The model captures both external and internal influ-
ences on adoption

James-Stein Estimator
The James-Stein estimator is a method in statistical deci-
sion theory that improves upon traditional estimators, par-
ticularly when dealing with multiple parameters. Shrinkage
estimation reduces variance by pulling individual estimates
toward the mean, which leads to lower overall mean squared
error compared to traditional estimation methods. In the
context of baseball, James-Stein estimation is applied to bat-
ting averages, demonstrating that individual player estimates
can be improved by incorporating information from the entire
dataset.

The James-Stein estimator is given by:

θ̂JS
i = θ̄ +

(
1− (p− 2)σ2∑p

i=1(θi − θ̄)2

)
(θi − θ̄) (1)

where θi are the individual estimates, θ̄ is the overall mean,
and p is the number of parameters.

Interpretation
The estimator reduces variance by shrinking extreme esti-
mates toward the group mean, leading to more stable predic-
tions.

When is Time for James-Stein?
The James-Stein estimator has better predictive accuracy
than traditional methods when:

• There are at least three parameters being estimated.

• Individual estimates have high variability, making
shrinkage beneficial.

• The parameters being estimated are related (such as
batting averages across players in a season), allowing
for shared information.

• The normality assumption holds, which underlies the
theoretical justification for the estimator.

Limitations and Assumptions
The estimator assumes normality and is applicable when es-
timating three or more parameters.

Residuals & Leverage
Residuals represent the differences between observed and pre-
dicted values in a regression model:

ei = yi − ŷi (2)

where ei is the residual, yi is the observed value, and ŷi is
the predicted value.

Standardized Residuals: Residuals adjusted for variabil-
ity:

ri =
ei

se
√
1− hii

(3)

where se is the standard error of residuals.

Studentized Residuals: Further accounts for variance in-
flation:

ti =
ei

s(i)
√
1− hii

(4)

where s(i) is the standard error excluding the i-th observa-
tion.

Leverage measures how far an observation’s predictor values
are from the mean predictor values:

hii = Xi(X
TX)−1XT

i (5)

where hii is the leverage score of observation i.

Observations with high leverage (hii >
2p
n
) can dispropor-

tionately affect the regression model.

Cook’s Distance: Quantifies how much an observation af-
fects regression estimates:

Di =
r2i hii

p(1− hii)
(6)

where p is the number of predictors.

A Cook’s Distance greater than 1 suggests high influence.

DFITS:

• DFITS measures the effect each observation has on the
fitted values in a linear model. DFITS represents ap-
proximately the number of standard deviations that
the fitted value changes when each observation is re-
moved from the data set and the model is refit.

• Interpretation (DFITS):
– Observations that have a large DFITS value may

be influential.
– A commonly used criterion for a large DFITS

value is if DFITS is greater than 2
√
p/n.

Diagnostic Classification:

Stat. Unusual Very Unusual

hi > 2p
n

> 3p
n

r |r| > 2 |r| > 3

t |t| > 2 |t| > 3

D > 0.5 > 1.0

Diagnostic Procedures:

• Identify high-leverage points using hii values.
• Detect outliers using standardized residuals (|ri| > 2

suggests an outlier).
• Evaluate influence with Cook’s Distance.
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• Use multiple diagnostics together for a comprehensive
analysis.

Common Errors:

• Ignoring high-leverage points can distort model accu-
racy.

• Confusing residuals with standardized residuals in
model assessment.

• Relying solely on one diagnostic measure instead of
considering multiple checks.

Lasso/Ridge Regression
Regularization techniques prevent overfitting by imposing
a penalty on coefficient magnitudes. Ridge regression
(Tikhonov regularization) adds an ℓ2 penalty, minimizing:

n∑
i=1

(Yi −X⊤
i β)

2 + λ

p∑
j=1

β2
j .

Lasso regression adds an ℓ1 penalty, minimizing:

n∑
i=1

(Yi −X⊤
i β)

2 + λ

p∑
j=1

|βj |,

which encourages sparsity by setting some coefficients to zero.

1. Standardization: Regularization methods are sensi-
tive to scale, so we standardize predictors and center
the response:

Xij ←
Xij − X̄j

σXj

,
X̄j=

1
n

∑n
i=1 Xij ,

σ2
Xj

= 1
n

∑n
i=1(Xij−X̄j)

2,

Yi ← Yi − Ȳ , Ȳ =
1

n

n∑
i=1

Yi.

This ensures that the intercept is not penalized and
facilitates numerical stability.

2. λ Range Estimation: The regularization parameter
λ controls the penalty strength. We estimate a suitable
range:

• Compute eigenvalues d1, . . . , dp of X⊤X.

• Set λ values on a logarithmic scale:

λ ∈ [0.01dmin, 10dmax] .

• For Lasso, the maximum λ is the smallest value

where all β̂ = 0.

3. Cross-Validation: We use k-fold cross-validation
(typically k = 10) to select the optimal λ:

• Partition data into k folds.

• For each λ, fit models on k− 1 folds and validate
on the remaining fold.

• Ridge regression estimates coefficients via:

β̂−k = (X⊤
−kX−k + λI)−1X⊤

−kY−k.

• Predict on validation set:

Ŷk = Xkβ̂−k.

• Compute mean squared error (MSE):

MSEk(λ) =
1

nk

nk∑
i=1

(Yk,i − Ŷk,i)
2.

• Compute cross-validation MSE:

CV-MSE(λ) =
1

k

k∑
j=1

MSEj(λ).

• Choose λmin minimizing CV-MSE.

Lasso regression uses coordinate descent for coefficient
estimation.

4. Final Model: Using λmin, refit the model on the full
dataset:

β̂ = (X⊤X + λminI)
−1X⊤Y.

Lasso coefficients are obtained via iterative soft-
thresholding.

5. Output: The final model contains:

• Coefficients β̂.

• Residuals Y −Xβ̂.
• Fitted values Xβ̂.

• Model diagnostics (e.g., R2, residual plots).

Lasso may produce sparse β̂, performing feature selec-
tion.

Prediction
Best Approaches:

• Use Multiple Linear Regression (MLR) or Ridge/Lasso
Regression for many predictors.

• Apply Partial Least Squares (PLS) if predictors are
highly collinear.

• Consider Polynomial Regression if nonlinearity is sus-
pected.

• Split data into training and testing sets (e.g., 80%-
20%) for model evaluation.

Best Fit Metrics:

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

RMSE measures the average magnitude of prediction
errors. It provides an indication of how well the model
predicts the dependent variable. Lower RMSE values
indicate better model performance.

• R-squared (R2):

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

(8)

R2 represents the proportion of variance in the depen-
dent variable explained by the model. A value closer
to 1 indicates a strong relationship between predictors
and response, whereas a value near 0 suggests a poor
fit.

• Predictive R2, PRESS Statistic – Evaluates predic-
tive capability:

PRESS =

n∑
i=1

(yi − ŷ(i))2 (9)

The Predicted Residual Sum of Squares (PRESS)
statistic measures how well a regression model predicts
new observations. Lower PRESS values indicate a bet-
ter model.

• PRESS R2:

R2
PRESS = 1− PRESS∑

(yi − ȳ)2
(10)

PRESS R2 evaluates model predictiveness using leave-
one-out residuals. A higher PRESS R2 value indicates
stronger predictive performance.

• Cross-Validation Mean Squared Error (CV
MSE):

CV MSE =
1

k

k∑
j=1

MSEj (11)

CV MSE is an average of mean squared errors obtained
from k-fold cross-validation. It helps in assessing model
generalization to unseen data. Lower values indicate
better predictive performance.

• Mallow’s Cp Statistic:

Cp =
SSres

σ2
− (n− 2p) (12)

Mallow’s Cp helps in model selection by balancing
goodness-of-fit and model complexity. A smaller Cp

value close to the number of predictors p suggests a
well-fitting model.

Choosing the Best k for Cross-Validation:

• Small k (e.g., 5 or 10): Less computationally expen-
sive but results in higher variance in the model’s per-
formance estimates. Suitable for large datasets.

• Large k (e.g., k = n, Leave-One-Out Cross-Validation
- LOOCV): Provides a more precise estimate of model
performance but is computationally expensive and can
have higher variance in some cases. Suitable for small
datasets where every observation matters.
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Understanding Relationships
Best Approaches:

• Use Ordinary Least Squares (OLS) Regression.

• Check p-values of coefficients (H0: coefficient = 0).

• Include interaction terms if relationships depend on
other variables.

Best Fit Metrics:

• Adjusted R2: Accounts for number of predictors, pre-
venting overfitting.

• p-values, Confidence Intervals (CIs): Assess pre-
dictor significance.

• Variance Inflation Factor (VIF):

VIFj =
1

1−R2
j

(13)

Detects multicollinearity; VIF > 10 suggests high
collinearity.

Causal Inference
Best Approaches:

• Use regression with a designed experiment.

• Apply Instrumental Variable (IV) Regression to ad-
dress endogeneity.

• Consider Difference-in-Differences (DiD) or Propensity
Score Matching (PSM).

Best Fit Metrics:

• Coefficient Interpretability: Theoretical validity of
estimates.

• R2 and Adjusted R2: Measure explanatory power.

• Causal Tests: Check for confounders, robustness
checks.

Feature Selection/Importance
Best Approaches:

• Use Lasso Regression for automatic feature selection.

• Try Stepwise Regression (Forward/Backward selec-
tion).

• Apply tree-based models (Random Forest, XGBoost)
for ranking importance.

Best Fit Metrics:

• Feature Importance Scores (from tree-based mod-
els).

• Akaike Information Criterion (AIC):

AIC = 2k − 2 ln(L) (14)

Lower is better; penalizes complexity.

• Bayesian Information Criterion (BIC): Similar to
AIC but penalizes complexity more strongly.

• Adjusted R2: Helps avoid overfitting.

Common Errors to Avoid:
• Ignoring multicollinearity (use VIF checks).

• Overfitting with too many predictors (use AIC/BIC,
cross-validation).

• Assuming correlation implies causation (use causal in-
ference methods).

• Using RMSE alone for model evaluation (also consider
Adjusted R2 and predictive performance).

Robust Regression
Problems Addressed by Robust Regression:

• Non-constant variance (heteroscedasticity)

• Correlated errors (autocorrelation)

• Non-normality of errors

• Overfitting and multicollinearity

• Protect against influential outliers

• Useful for detecting outliers

• Check results against a least squares fit

Definition: Robust regression methods provide an alterna-
tive to ordinary least squares (OLS) regression by requiring
less restrictive assumptions. They aim to reduce the influ-
ence of outliers, providing a better fit for the majority of the
data.

OLS vs. Robust Regression:
• OLS minimizes the sum of squared residuals, making

it sensitive to outliers:

min
β

n∑
i=1

(yi −Xiβ)
2

• Robust regression uses alternative norms or weighting
schemes to down-weight influential points.

Least Absolute Deviation (L1-Norm) Regression:

min
β

n∑
i=1

|yi −Xiβ|

Type ρ(x) ψ(x) w(x)

L2 x2/2 x 1

L1 |x| sgn(x) 1
|x|

L1 − L2 2(
√

1 + x2/2− 1) x√
1+x2/2

1√
1+x2/2

Lp
|x|ν
ν

sgn(x)|x|ν−1 |x|ν−2

“Fair” c2
[
|x|
c
− log

(
1 + |x|

c

)]
x

1+|x|/c
1

1+|x|/c

Huber

{
if |x| ≤ k
if |x| > k

{
x2/2
k(|x| − k/2)

{
x
k sgn(x)

{
1
k/|x|

Cauchy c2

2
log(1 + (x/c)2) x

1+(x/c)2
1

1+(x/c)2

German-McClure x2/2

1+x2
x

(1+x2)2
1

(1+x2)2

Welsch c2

2

[
1− exp

(
−(x/c)2

)]
x exp

(
−(x/c)2

)
exp

(
−(x/c)2

)
Tukey

{
if |x| ≤ c
if |x| > c

{
c2

6

(
1−

[
1− (x/c)2

]3)
c2/6

{
x
[
1− (x/c)2

]2
0

{[
1− (x/c)2

]2
0

Least Median of Squares (LMS) Regression:

min
β

mediani(yi −Xiβ)
2

Iteratively Reweighted Least Squares (IRLS):

• IRLS is a common robust regression technique using
weighted least squares.

• Weights are determined based on residuals and up-
dated iteratively:

min
β

n∑
i=1

wi(yi −Xiβ)
2

• The weights are updated using a robust function, e.g.,
Huber or Tukey’s biweight function.

This is equivalent to solving an iterated reweighted least-
squares problem:

min
∑
i

w
(
rk−1
i

)
r2i ,

where k denotes the iteration number, and weights are up-
dated iteratively.

The influence function ψ(x) quantifies the effect of an obser-
vation on the parameter estimate. For least-squares (ρ(x) =
x2/2), ψ(x) = x, meaning the influence grows linearly with
the residual, making it non-robust. A robust M-estimator
must satisfy:

1. A bounded influence function to limit outlier effects.
2. A unique solution to ensure estimator stability.

Convergence:

• Choose initial weights.
• Perform weighted least squares.
• Update weights using residuals.
• Repeat until convergence.

Interpretation: (Robust regression) particularly useful
when data contains outliers or violates the assumptions of
normality and constant variance. By reducing the influence
of these points, robust regression provides more reliable co-
efficient estimates and improved model performance.
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