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The “Annoyingly Intractable” Ratio Estimator

Variance Approximation via Taylor Expansion

" The distribution of the ratio estimate has proved annoyingly
intractable because both y and x vary from sample to sample.
The known theoretical results fall short of what we would like
to know for practical applications. ”

— WiLLiAM G. COCHRAN

Sampling Techniques
page 153

When sampling a population, we frequently encounter situations where auxiliary information can
substantially improve the accuracy of our estimates. The ratio estimator is one of the oldest and

most widely used techniques for exploiting such information. (Scheaffer et al., 2012).

Definition. Let Y be a study variable and X an auxiliary variable measured on the same

units. The ratio estimator of the population mean p,, is defined as

Y
r=—=" MU= R My
x M -
Y . N > : :
where R = X is the sample ratio, Y and X are sample means, and z.. is the known population

mean of X.

The ratio estimator works best when the study variable Y correlates positively with the auxiliary
variable X, their relationship passes approximately through the origin, and the population total or
mean of X is known from external sources like census data or administrative records. When these
conditions hold, the estimator exploits the correlation structure to reduce sampling variability, often

achieving substantial efficiency gains over the simple sample mean (Scheaffer et al., 2012).

However, all that glitters is so unfortunately not gold. The ratio estimator’s fundamental challenge

stems from its nonlinearity: » = — is a nonlinear function of two random variables, creating two

problems (Cochran, 1977). Bias appears because

Elr] # R = B in finite samples,

€T

breaking the unbiasedness property of the sample mean. And the arguably larger problem that
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the variance formulas also fail to exist; the distribution of a ratio of random variables is generally
intractable, depending on the full joint distribution of ¥ and X. These issues have driven statis-
ticians to approximation methods since the early 20th century, with the standard approach being
Taylor series linearization of the ratio function followed by standard variance formulas (Cochran,

1977; Oehlert, 1992).

The key insight is that while the ratio is nonlinear globally, it behaves approximately linearly in
a neighborhood of the population means (g, pt..). For large samples, the sample means (Y, X)
concentrate near (4, /1), so a local linear approximation becomes accurate (Casella and Berger,
2002).

> = Y
Core Idea. Expand the function g(Y, X) = = in a Taylor series around the point (g, f£.).

The first-order (linear) approximation converts the nonlinear problem into a linear one, for

which variance calculations are straightforward.

Linearization is a general technique that works by using a linear function L to approximate a more

complex function, r, usually a ratio or non-linear statistic. For a linear function in the form
L=a+bY +cX
its variance can be calculated exactly using the formula

Var(L) = b* Var(Y') + ¢ Var(X) + 2bc Cov(Y, X).

Ratio Value

— True Nonlinear Ratio
—— Linear Approx (Tangent)

Approximation Error

Auxiliary Mean (X)

Taylor series expansion is the tool that we will use in order to construct this linear approxima-
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tion. To linearize our ratio with a sufficient degree of accuracy requires only the first-order Taylor
polynomial, but quantifying the bias of our estimator demands that we compute the second-order

Taylor polynomial.
Our ratio can be expressed as a function of X and Y as follows:
Let g(y,z) = 2
T

To derive the linear approximation of g we begin by setting up the Taylor expansion. We expand

g around the population means (g, /t,.) using a first-order Taylor polynomial where subscripts

denote partial derivatives.:

9V, X) & g(ty, 1) + Gy (tey, 1) (Y = piy) + go(phy, 1) (X — p12),

Y 1z
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Substituting these derivatives into the Taylor expansion yields the first-order approximation:

Y 1 - R
r==x~R+—(Y —p,) — —(X — 1
SR+ — ) = (X - )

This can be rewritten more compactly as:

TQR%—L[(Y’—;@)—R(X—/%)].

€T

The linearized form expresses the deviation of the sample ratio from the population ratio as a

weighted combination of the deviations of the sample means from their population values.

Now that we have a linear estimator we can turn to calculating its variance:

€T €T

Var(r) ~ Var (R b (Y ) - ME(X - um)) |

We first distribute the terms to separate the random variables (Y, X ) from the population constants.
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Since the variance of a constant is zero, the additive constant terms drop out:

1 - — 1 - _
Var(r) ~ Var([R— By + R} + —Y — EX) = Var(—Y — Ex> )
o Hoa Ha Ha Ha

Next, we apply the following property of the variance:

Var(aY — bX) = a* Var(Y) + b* Var(X) — 2ab Cov(Y, X)
Var(r) ~ Var <LY) + Var (EX') —2Cov (LY, il _)

Ha o fe | Mo
_ (i) Var(¥) + (%) Var(X) — 2 (i) (%) Cov (¥, X).

Simplifying the coefficients yields the final approximation:

o

1 — R? - 2R
o Var(Y') + 2 Var(X) — P

Var(r) ~ Cov(Y, X).

1
Factoring out —, we obtain the celebrated ‘delta-method’ variance formula for the ratio estimator

after linearizing it via Taylor expansion (Scheaffer et al., 2012):

Var(Y) — 2R Cov(Y, X) + R? Var(X)]

Var(r) ~ 3

It should be noted that this variance formula can be expressed in several equivalent forms. Defining

the “residual” e; = y; — Rx;, we can write:

1 _ _
Var(r) ~ —; Var(é), where e=Y — RX is the sample mean of the residuals.
Lo

For simple random sampling without replacement (SRSWOR) from a finite population of size N:

N

ny S,2 1
Var(r) ~ <1 — N) i where S,% = N1 Z:(yz — Rx;)?
v i=1

S,2 is the population variance of the residuals (Scheaffer et al., 2012).

The first-order Taylor expansion shows that E[r] ~ R, suggesting the ratio estimator is approxi-

mately unbiased. However, this approximation ignores higher-order terms that contribute to bias.
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To quantify the bias, we extend to a second-order Taylor expansion (Cochran, 1977):
9(Y, X))~ gy, 1) + gy (1 112)(Y = 1) + gty 1) (X = p12,)

- % [gyy(uy, 1) (Y = 11y)? 4 2040 (1, 1) (Y = 1y ) (X = 12) + G (1 112) (X — p22)?].

Computing these partial derivatives and substituting them in yields:

(gyy(y’ z) =0 = Gyy(y, pz) =0
1
oy, @) = 2 gi”i v m = = gl ==
9z\Y,T) = )
2y 2, 2R
\gww(y’m> ) = Gaa(By, Ha) = ng = ]
Y, X y < 1 2 3 o 2R, _
oV )~ Rt (¥ =) = 2 (X =)+ 5[0 = 25 (7 =) (K =) + 5 (X = )’
Yop R g L g . R .
=R+ 'LLy__<X_”w)_ 2(Y_.Uy>(X_Mm)+—2<X—uw)2,

Ha M Ha Ha

We take the expectation of the expanded series. Since E[Y — p,] = 0 and E[X — p,] = 0, the

first-order linear terms vanish. We focus on the expectations of the second-order terms:

1 — 1 - — 2R — 9
E[r] ~ R+ 3 0-Var(Y) +2 (_Mw2> E[(Y — py) (X — um)} + (qu) E[(X — i) }
Substituting the definitions of covariance and variance:
1 2 S 2 = - _
E[r] ~ R+ 5 [—m Cov(Y, X) + Mf; Var(X)} =R- e Cov(Y, X) + ::2 Var(X).

Factoring out the common term 1/,

Elr] ~ R+

2

o [R Var(X) — Cov(Y, X')]

To find the bias of our estimator we just need to subtract the true population value of R from this

expectation:
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1

Bias(r) = E[r| — R ~
() =Elr] - R~ —

2

[R Var(X) — Cov(Y, X)].

To understand the asymptotic behavior, recall the formulas for variance and covariance under

SRSWOR. With population variance 5,2 and covariance Sey:

Var(X) = (1 — —

Substituting these into the bias approximation yields:

Bias(r) ~ i [R (1 - %) ST‘;’Q - (1 — ﬁ) %] _ % [1;2‘]8(13512 - smy)] .

(. /
-~

Population Constants

Since the term in brackets is independent of the sample size n (treating the finite population

correction f = n/N as negligible or bounded), we conclude:

i)~ (L),

This demonstrates that the bias decreases linearly as the sample size increases, confirming that the

ratio estimator is asymptotically unbiased (Cochran, 1977).

It is useful to express the bias relative to the true ratio R = &. Dividing the bias approximation

by R: ' _ _
[R\/'ar()_() — COV(Y,X)] = Var(i() — COV(Y’X).
o Ly lha

Bias(r) 1
R Ry,

For Simple Random Sampling without Replacement (SRSWOR), we substitute the known variances:

1-— _ 1—
fS;,? & Cov(Y,X) = —fpSé,,Sy
n n
N Bias(r) (1 - f) [5,2 B pS;,,Sy}
[ Hz? Pyl

(66

Using the coefficients of variation C,, = — and C, = —2:
i 1y

B) (2 ) = (1 ) GGG

Var(X) =

6
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The bias is typically positive (overestimation) when pC, < Cj, and is proportional to C,?. High

positive correlation between X and Y reduces the bias (Cochran, 1977).

Linear approximation via Taylor Expansion method provides a convenient, closed-form approx-
imation for the variance of a ratio estimator, but it rests on asymptotic theory and first-order
linearization. In finite samples, the accuracy of this approximation depends on several factors: the
degree of curvature in the ratio functional g(Y, X), the proximity of X to zero (which affects the
stability of the ratio), and the concentration of the sampling distribution of (Y, X) around the

population means (fty, fts).

To build confidence in the derived formula and to understand its behavior in realistic settings, we
empirically assess its accuracy by comparing it against two computational approaches that make

fewer analytical approximations:

1. Method A (Simulation): We treat the predicted variance produced by the Taylor Expansion
as a hypothesis to be tested against a Monte Carlo “ground truth.” By generating a synthetic
finite population from a known joint model for (Y, X) (e.g., bivariate normal with specified
means, variances, and correlation), we can repeatedly draw probability samples (SRSWOR),
compute the ratio estimator in each replication, and estimate its empirical variance across
replications. This method directly approximates the true sampling variance of » under the
specified design, free from linearization error. The discrepancy between the simulation variance
and the approximated variance derived above reveals how well the first-order approximation

captures the actual variability in ».

2. Method B (Bootstrap): In practice, we rarely have access to the full finite population;
we observe only a single sample. The bootstrap offers a design-based resampling strategy that
mimics the sampling process: from one observed SRSWOR sample, we generate many bootstrap
resamples (with replacement) to approximate the sampling distribution of . Comparing the
bootstrap variance to the Taylor Series prediction tells us whether a practitioner relying on
resampling would obtain a similar uncertainty estimate to one using analytic linearization.
This is particularly relevant when the ratio estimator is embedded in a complex survey design

where closed-form variance formulas are unavailable.

This exercise follows well-established practice in survey sampling and resampling methods; see, for
example, Cochran (1977, pp. 162-164) for empirical validations of the approximate variance, and
Efron and Tibshirani (1993, pp. Ch.20) for rigorous comparison of the Taylor series linearization

(delta-method) and bootstrapping.
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We generate a synthetic finite population of size N = 100,000 with a bivariate normal structure:

Y N o, poyo,
X poyo. 0. )

We fix the target means p,, = 15 and 1, = 10, standard deviations o, = 6, o, = 4, and correlation
Py _ 15
l’l’.’I)

Hy
Ho

9

p = 0.8. The population ratio is R =

The choice of N = 100,000 ensures that the finite population is large enough to approximate
the superpopulation model while keeping sampling fractions small enough that finite-population
corrections are meaningful. The correlation p = 0.8 creates a strong linear relationship between
Y and X, which is typical in ratio estimation contexts (e.g., where X is an auxiliary variable
that explains much of the variation in Y). The means and standard deviations are chosen so that
1. is comfortably away from zero, avoiding the instability that arises when the denominator can

approach zero.

For sampling, we draw SRSWOR samples of size n = 200, with K = 2000 Monte Carlo replications
in Method A. This sample size is modest but realistic for many survey applications, and it is
large enough for the central limit theorem to begin taking effect for (Y, X). For Method B,
we draw a single SRSWOR sample of size n and apply B = 3000 bootstrap resamples. The
number of bootstrap replicates is chosen to yield a stable variance estimate; B > 2000 is generally

recommended for variance estimation.

In each replication (or bootstrap resample), we compute the ratio estimate
Y

X

r =

For the Taylor series prediction, we use the linearization result:

[Var(¥) — 2R Cov(¥, X) + R?Var(X)],

Var(r) ~
( ) l’l/(Ez

or, under SRSWOR from a finite population,

Var(r) ~ (1 - ﬁ) 5.

N 27 Sr2 = HZ(y'L - Rwi)27

N [y
Ha i=1

see Cochran (1977); Oehlert (1992). In practice, we plug in the finite-population quantities com-
puted from the generated population for pu,, R, and S, 2.

The first expression reveals the underlying logic of the linear approximation: the variance of r is



December 7th, 2025 Aidan J. Wagner

driven by the variability of the numerator Y and denominator X, but it also depends on their
covariance. The term R?Var(X) captures the contribution of denominator uncertainty, while
—2R Cov(Y, X) reflects the fact that when Y and X are positively correlated, fluctuations in
the denominator partially offset fluctuations in the numerator, reducing overall variability. The
second expression is more practical for computation: 5,2 is the population variance of the residuals
r; = y;— Rx;, which represent the deviation of each y; from the proportional relationship implied by
the ratio R. The finite-population correction (1—n/N) accounts for the fact that sampling without

replacement from a finite population reduces variance relative to sampling with replacement.

Method A (Simulation): Across R = 2000 replications, the empirical variance of r is

Vargim(r) = 0.0007193404.

The corresponding Taylor Series prediction, evaluated using the population quantities, is
Vara(r) = 0.0007160586.

The relative error is

— —

Vargim () — Vara (7)

— = 0.004583.
Vara ()

The simulation variance is slightly higher than the Taylor Series prediction (by about 0.46%). This
modest upward bias is consistent with the fact that the approximation first-order Taylor polynomial:
it ignores higher-order terms in the Taylor expansion of g(Y, X) that can contribute additional
variability, especially in finite samples. The small magnitude of the discrepancy suggests that,
for this configuration, the linearization provides an excellent approximation to the true sampling

variance.

Method B (Bootstrap): From a single SRSWOR sample and B = 3000 bootstrap resamples,

the bootstrap variance estimate is

Varpoo(r) = 0.0006894320.

Its relative difference from the Taylor series prediction is

\//aE"Boot(r) — \//a\rA(r)

— = —0.037185.
Vara(r)

The bootstrap variance is about 3.7% lower than the Taylor series prediction. This downward bias
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is typical of the nonparametric bootstrap for ratio estimators: bootstrap resampling introduces
additional discreteness and can underestimate the true sampling variance when the estimator is
nonlinear. The bootstrap distribution is centered at the sample ratio r rather than the population
ratio R, and the resampling process does not fully capture the variability of X around p,. Never-
theless, the bootstrap estimate remains in the same ballpark as the analytic approximation, which

is reassuring for practical applications.

The table summarizes the numerical comparison. The simulation variance aligns almost perfectly
with the Taylor Series prediction, confirming that the linearization captures the bulk of the sampling
variability. The bootstrap variance, while slightly lower, is still reasonably close, suggesting that
resampling-based inference can serve as a viable alternative when analytic formulas are unavailable

or when the sampling design is more complex.

Taylor Series  Simulation Bootstrap
Variance estimate 0.0007160586 0.0007193404  0.0006894320
Relative error vs Taylor Series - 0.004583 -0.037185

Ratio Estimator Distributions: Simulation vs Bootstrap
True Population ratio of 1.5

1o Method
j=) . .
= Simulation
[]
2 Bootstrap
> — Linearization

T T
1.40 1.45 1.50 1.55 1.60
Ratio estimate

Figure 2: Comparison of variance estimates for the ratio estimator: Taylor series prediction versus simulation and
bootstrap results. Dashed line indicates R.

The density plot (Figure 2) visualizes the sampling distribution of the ratio estimator r across sim-
ulation replications and bootstrap resamples. Both distributions are approximately centered near
the true ratio R = 1.5 (dashed line) and exhibit similar spread, though the bootstrap distribution is
slightly more concentrated, consistent with its lower variance estimate. The near-normality of both

distributions validates the asymptotic normal approximation that underlies the Taylor expansion.

In this configuration, the simulation-based variance is above the linearized prediction by 0.46 %,
while the bootstrap variance is below the linearized prediction by 3.72 %. Discrepancies can arise

from finite-sample effects, the curvature of the ratio functional, and the extent to which (Y, X)

10
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concentrate near (ft,, [t,). As expected from linearization theory (Oehlert, 1992; Cochran, 1977;
Scheaffer et al., 2012), agreement tends to improve with larger n, stronger concentration of X

around /s, and when the linear model through the origin is an adequate approximation.

The results illustrate a key trade-off: the Taylor expansion is computationally trivial once derived,
but it relies on assumptions that may not hold in small samples or with highly nonlinear estimators.
The simulation approach provides a gold standard but requires knowledge of the superpopulation
model and is computationally intensive. The bootstrap offers a middle ground: it is design-based,
requires no model assumptions, and can be applied to complex estimators, but it may exhibit modest
bias in finite samples. The takeaway is that the linearized variance formula is highly reliable for
ratio estimation under SRSWOR when the sample size is moderate and the denominator variable
is well-behaved. When in doubt, or when dealing with more complex designs, bootstrap validation

provides a useful robustness check.
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