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1 Introduction

The modern field of statistics is the cumu-
lative sum of a history spanning centuries—
a history that eagerly anticipated the devel-
opment of the electronic computer. As such,
since the earliest conception of computers,
their development has been intimately in-
tertwined with the development of statis-
tical methods. As statisticians we do not
stand on the shoulders’ of giants; rather, we
stand proudly atop a of pyramid comprised
of our predecessors. No where is this more
evident than in the case of Partial Least
Squares (PLS). Originally synthesized from
existing methods in the 1960s, over the next
half century PLS has grown into a sprawl-
ing and flexible analytic tool that ought to
be in any competent statistician’s tool box.
Over the years, PLS has been expanded and
refined both conceptually and computation-
ally. Researchers have been constantly de-
riving ways to apply PLS to a variety of
problems; at the same time the algorithm
used to compute PLS has undergone sig-
nificant development: refining both its ef-
ficiency, accuracy, and flexibility.

The PLS umbrella includes a variety of
methods that solve an assortment of multi-
variate hurdles. Of the so called ”Soft Mod-
eling” methods, PLS regression is particu-
larly useful when the goal is prediction based
on a large number of collinear predictors. As
digital computers have developed, the num-
ber of predictors in question seems to grow
according to Moore’s Law. As a result of
this, and the elegant yet robust solution PLS
offers, it is no surprise that it has captured
the attention of researchers since its concep-
tion. It seems that as the statistical land-
scape shifts so too does the implementation
of PLS regression. While many of these re-
finements to the technique seek to address
the needs of a specific use case; the general
procedure has also been optimized over the
years to leverage the computational power of
modern computers. Of these optimizations,
perhaps the most fascinating is the use of
singular value decomposition (SVD) which
allows all components to be calculated in the
same decomposition, rather than calculating
them iteratively.

In order to fully appreciate the pros and
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cons of SVD algorithms in calculating PLS
regression it is important to understand
where it came from. The following will pro-
vide an overview of the historical develop-
ment of PLS, before investigating the ini-
tial iterative algorithm use to compute the
components. From here, the fundamentals
of SVD will be introduced, after which a re-
vised algorithm that uses SVD will be ex-
plored and compared to the earlier iterative
algortithm.

2 The Origins of PLS

The story of PLS begins in the snowy
mountains of Upsala, Sweden. In the early
1960s, Herman Wold was working on a
method to analyze the relationship between
a set of predictors and a set of responses.
He was particularly interested in the case
where the predictors were highly collinear,
which made traditional regression methods
unreliable. Wold’s solution was to use a la-
tent variable approach, where he would ex-
tract a small number of latent variables from
the predictors and use them to predict the
responses. This method was later named
Partial Least Squares (PLS). This initial al-
gorithm was called "NILES” standing for
"Nonlinear Iterative Least Squares”, which
was later updated to "NIPALS” (Nonlinear
Iterative Partial Least Squares).

Coming from a background in economet-
rics, in which the cut and dry indepen-
dent predictors demanded by OLS are rarely
found, Wold was no stranger to the chal-
lenges introduced by multicollinearity. He
first laid the groundwork for what would
later become known as PLS in a 1966 pa-
per in which he introduces a iterative least
squares approach that can be used to es-
timate the principal components of a set

of predictors [11]. Less than three years
later, he and a group of coauthors pub-
lished furter applications of these kinds of
iterative least squares algorithms to solve a
number of problems in econometrics (includ-
ing canonical correlation analysis and and
fix-point estimation)[15]. The emergence of
PLS from principal component analysis is no
coencidence. The two methods share a com-
mon goal: to reduce the dimensionality of
a dataset while preserving as much informa-
tion as possible. However, PLS takes this
a step further by also considering the re-
lationship between the predictors and the
responses, making it a more powerful tool
for regression analysis. However, it would
take a few more years before the method
would fully galvanize into a cohesive algo-
rithm. [12]

Herman Wold;
the father of PLS [10]

In the years following Wold’s initial work,
interest in PLS, which was still in its in-
fancy, continued to grow. In 1975, Wold
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and his colleagues published a paper that
provided a more detailed description of the
PLS algorithm and its applications, expand-
ing the models to include an increasing num-
ber of predictors[13]. This paper laid the
foundation for many of the subsequent de-
velopments in PLS, including the introduc-
tion of cross-validation techniques to assess
the performance of PLS models. By the end
of the 70s the research had solidifed enough
that Wold and his colleagues were able to
iron out the details of the method and pub-
lish the first stable version of the so called
"Basic Design” of PLS, in which a more for-
mal treatment of the convergence of the al-
gorithm was provided [14].

In the 1980s, PLS gained popularity in
the chemometrics community (having accep-
tance in the field as common practice by the
1990s), where it was used to analyze complex
data sets in fields such as spectroscopy and
chromatography. The iterative NIPALS ap-
proach was particularly well-suited for this
because it could handle large numbers of
varibles, as well as missing data [16]. Con-
currently, a number of software packages
were developed to implement PLS, making
it more accessible to researchers in various
fields, but there was relatively little theoret-
ical development of the method itself.

1975 1989

Wold expands the
algorithm to handle
more than one latent
variables as well as

1969
The NILES Algorithm
is renamed to
NIPALS “Nonlinear
Itearive _PArtial Least

publishes the earliest
pseud-code of the
basic algorithm

more than one

However, this brief stall in the theoreti-
cal development of PLS was short lived. In
the 1990s, PLS experienced a resurgence in
popularity, thanks in part to the increas-
ing availability of powerful computers and
software packages. Of particular interest to
us is the publication of the first SVD-based
PLS algorithm by Sijmen de Jong in 1993
[3]. This paper introduced a new approach
to PLS that used singular value decomposi-
tion (SVD) to compute the components of
the model, rather than the iterative least
squares approach used in earlier versions of
PLS. This new method was more efficient
and allowed for the computation of all com-
ponents in a single step, making it particu-
larly useful for large data sets. Researchers
began to explore new applications of PLS
in fields such as genomics, proteomics, and
metabolomics, where the method was used
to analyze high-dimensional data sets with
many more predictors than observations. [7]
This led to the development of new variants
of PLS, such as sparse PLS and kernel PLS,
which were designed to handle specific chal-
lenges in these fields.

At the dawn of the 21st century, PLS was
firmly established as a powerful and versatile
tool for multivariate data analysis. PLS

1996 2010 2020
Jan-Bernd Lohméller PLS has become a standard PLS becomes popular in fMRI
tool in chemometrics for
handling multicollinear
spectral data, notably in
NIR (near-infrared) and

Bayesian formulations of PLS
begin to appear, offering
uncertainty quantification and
interpretability, especially in
small-sample, high-

and brain imaging studies,
modeling relationships
between cognitive/behavioral
variables and multivariate

Squares”
= between-block Raman spectroscopy. brain activity patterns. dimensional settings.
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the SIMPLS algorithm
a simplified and more
computationally

the framework
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to extend PLS
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” . . X efficient version of
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for calculating models with producing ! y
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extensions of PLS
are developed,
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implementations,

increasing accessibility

and hybrid use with
other methods.

combining deep
learning with PLS
emerge,
such as DeepPLS,
aiming to retain
interpretability while
gaining the power of
nonlinear learning.
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found yet another application in the imag-
ing of the brain. In this context, PLS was
used to analyze functional magnetic reso-
nance imaging (fMRI) data, where it was
used to identify brain regions that were acti-
vated during specific tasks or conditions.[5]
The method has further been adapted for
use in machine learning and data mining,
where it was used for tasks such as classifi-
cation and clustering. [9] This was accom-
plished via kernel methods, which allowed
PLS to be applied to non-linear data sets
of exeedingly high dimension. Furthermore,
more people than ever are using PLS thanks
in large part to the increasingly wide spread
availability of comptational programs like R
and python through community driven im-
plentations of the methods. [§]

In recent years, PLS has continued to
evolve and adapt to new challenges in data
analysis. Researchers have developed new
algorithms and software packages to improve
the efficiency and accuracy of PLS, as well
as new methods for assessing the perfor-
mance of PLS models. The method has also
been integrated into other statistical tech-
niques, such as Bayesian methods and en-
semble learning, further expanding its ap-
plicability. [4] With the recent surge in in-
terest in machine learning and artificial in-
telligence, PLS has found new applications
in these fields as well, where it is used to
analyze large and complex data sets. The
method has also been adapted for use in
deep learning, where it is used to extract
features from high-dimensional data sets and
improve the performance of neural networks.
[6] As we move forward into the future, it is
clear that PLS will continue to be a valu-
able tool for researchers and practitioners in
a wide range of fields.

3 The NIPALS Algorithm

So, how does one actually compute PLS
regression? The NIPALS algorithm is a sim-
ple and elegant solution to the problem of es-
timating the PLS components, perhaps that
is why the earliest formulations of PLS re-
gression use this itterative approach. [13]
The algorithm works by iteratively estimat-
ing the weights and scores of the compo-
nents, using a two-step process. In the first
step, the weights are estimated by regressing
the response variable onto the predictor vari-
ables. In the second step, the scores are esti-
mated by projecting the predictor variables
onto the weights. This process is repeated
until convergence, at which point the final
weights and scores are obtained.

The initial residual matrices are set to the
scaled inputs: E = X.aeqa and F = Ycateq-
Before iterating through components, mem-
ory is allocated for the key matrices: the
scores T and U (of dimensions n x H), the
loadings P and Q (of dimensions p x H and
q x H, respectively), the weights W and
C (also p x H and g x H), and vectors to
track variance explained by each component.
Where n denotes the number of observa-
tions, p is the number of predictor variables,
q is the number of response variables, and
H is the number of latent components (or
dimensions) to extract during the iterative
PLS process. Additionally, the total sum of
squares for X and Y is computed to normal-
ize variance explained metrics.

For each component h = 1,..., H, the al-
gorithm performs the following steps. First,
a response score vector u is initialized ran-
domly, typically with a fixed seed to ensure
reproducibility. Then, an iterative proce-
dure begins to extract latent variables:

e The predictor weights are updated as
4
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w = E"u and normalized.

o These weights yield the predictor score
t = Ew, which is also normalized.

e The response loading vector is com-
puted as q = F 't and normalized.

e A new response score vector is com-
puted as u = Fq.

These steps are repeated until the predic-
tor score t converges—typically measured by
the relative change in successive iterations
falling below a specified tolerance threshold.

Once convergence is achieved, a scalar
regression coefficient is computed as b =
t"u, representing the correlation between
the score vectors. The predictor loading is
computed as p = ETt.

Next, the residual matrices are deflated.
The predictor matrix is updated via E <
E — tp', and the response matrix is simi-
larly deflated using F <+ F —btq". This re-
moves the information captured by the cur-
rent component, ensuring subsequent com-
ponents capture new variation.

The resulting component vectors are stored:

T},
U,
Wi,
Ql

and the normalized response weight C|, h] =

ﬁ. The variance explained by this compo-

nent in both X and Y is also recorded.

I
2 g g

= = =
I

=
Il

After extracting all H components, the al-
gorithm performs post-processing. The cu-
mulative variance explained is computed for
both predictors and responses. The final
scaled regression coefficient matrix is calcu-
lated as:

Bscaled =W (PTW)_l dlag(b)QT>

where b is the vector of scalar coefficients
from each component. This matrix is then
rescaled to the original units of the data to
obtain Boyiginal, the regression coefficients in
the original space.

The algorithm returns all component matri-
ces (T, U, W, C, P, Q), the regression
coefficients, intercept, and the variance ex-
plained (both individual and cumulative) for
each component.

4  Singular Value Decomposition

Before explaining the SVD-based PLS
algorithm, it is important to understand
the concept of singular value decomposi-
tion (SVD). SVD is a powerful mathemat-
ical technique used in linear algebra to de-
compose a matrix into three simpler matri-
ces. Given a matrix A of dimensions m x n,
SVD can be expressed as:

A =USV'

where:

U is an m x m orthogonal matrix
whose columns are the left singular
vectors of A.

S is an m x n diagonal matrix contain-
ing the singular values of A, which are

the square roots of the eigenvalues of
ATA.

V is an n x n orthogonal matrix whose

columns are the right singular vectors
of A.

The singular values in S are ordered from
largest to smallest, and they provide infor-
mation about the importance of each corre-
sponding singular vector. The left singular
vectors in U represent the directions of max-
imum variance in the data, while the right

5
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singular vectors in V represent the direc-
tions of maximum covariance between the
predictors and responses. (Adapted from [2])

5 SVD-based PLS Algorithm

The algorithm begins by standardizing
the data: the predictor matrix X and re-
sponse matrix Y are both centered and
scaled to unit variance. The initial resid-
ual matrices are then defined as E = X caled
and F = Yg.eq. Prior to the component
extraction loop, memory is allocated for all
core matrices. These include the score ma-
trices T and U (of size n x H), the loading
matrices P and Q (dimensions p x H and
q X H respectively), the weight matrices W
and C (also p x H and ¢ x H), and vectors
to record variance explained at each compo-
nent. Additionally, the total sum of squares
for X and Y is computed to facilitate vari-
ance decomposition.

For each latent component h = 1,..., H,
the following procedure is executed. First,
the cross-covariance matrix is calculated as

R=E'F.

This matrix captures the linear associa-
tion between predictor and response residu-
als. The algorithm then performs a singular
value decomposition (SVD) on R:

R = U,(DV'.

From this decomposition, the first left and
right singular vectors are extracted, denoted
W = Usvd,:,l and q = V:71.

These vectors are then used to compute the
latent score vectors. The predictor score is
computed as t = Ew and then normalized
to unit length. The response score is calcu-
lated as u = Fq.

Following this, the predictor loading vec-
tor is computed:

p=E"t.

To measure the alignment between predic-
tor and response scores, a scalar regression
coefficient is calculated:

b=t"u.

The residual matrices are then deflated to
remove the structure explained by the cur-
rent component:

E—~E—tp', F«F—btq'.

This ensures that subsequent components
capture new, orthogonal sources of varia-
tion.

The computed component vectors are stored
as follows:

T[,h] =t

U[,h] =u

W[ h|=w

Q[Lh=qa
with the mnormalized response weights
recorded as C[,h| = Tqp- The variance ex-

plained in both X and Y by this component
is computed and stored.

After all H components have been ex-
tracted, the algorithm performs final post-
processing. Cumulative variance explained
is computed for both matrices, and any com-
ponents with negligible scalar regression co-
efficients are removed. The Moore-Penrose
pseudoinverse [2] of the predictor loading
matrix P is computed via the SVD-derived
factorization:

Pl = V diag (;) u’,
We cannot use the standard inverse of P here

because P is not guaranteed to be square,
6
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and as such the inverse is not gurranteed to
be defined. The Moore-Penrose pseudoin-
verse is merely a generalization of the inverse
that can be applied to non-square matrices,
and those without full rank. Using this, the
scaled regression coefficient matrix is assem-
bled:
Bcalea = PT dlag(b)QTa

which is finally rescaled back to the original
units of the input data, yielding Boriginal-

The algorithm returns all relevant matri-
ces—scores, loadings, weights—as well as
the regression coefficients, intercept term,
and detailed variance decomposition across
components.

6 NIPALS vs. SVD-based PLS

SVD is particularly useful in PLS regres-
sion because it allows for the simultane-
ous computation of all components in a sin-
gle step, rather than iteratively. This is
achieved by applying SVD to the concate-
nated matrix of predictors and responses,
which captures the relationships between
them. This approach is more efficient and
can lead to more accurate estimates of the
components, especially in high-dimensional
data sets. In usecases where the amount
of data is so large that the iterative ap-
proach would be computationally expensive,
SVD-based PLS can provide a more effi-
cient solution. [3] Additionally, In appli-
cations where the number of predictors is
much larger than the number of observa-
tions, SVD-based PLS can be particularly
advantageous, as it avoids the numerical in-
stability that can arise from the iterative ap-
proach. As a result of these properties, SVD-
based PLS has become the preferred method
for computing PLS regression in many appli-
cations. [5, 6, 7]

However, it is important to note that
SVD-based PLS is not without its limita-
tions. One potential drawback is that it can
be sensitive to the scaling of the data, partic-
ularly when the predictors and responses are
measured on different scales. This can lead
to biased estimates of the components and
regression coefficients. Furthermore, SVD-
based PLS is not able to handle missing data
in the same way as the iterative approach,
which can be a limitation in some applica-
tions. In these cases, it may be necessary
to use imputation techniques or other meth-
ods to handle missing data before applying
SVD-based PLS. [17] Imputation techniques
can introduce additional complexity and po-
tential bias into the analysis, which means
that the SVD algorithm is not necessarily a
universally better implementation.

Oftentimes, the two algorithms will yield
similar results, especially when the data is
well-conditioned and the number of predic-
tors is not excessively large. However, in
cases where the data is ill-conditioned or the
number of predictors is very large, the SVD-
based PLS algorithm may provide more sta-
ble and accurate estimates of the compo-
nents and regression coefficients. In these
cases, it is important to carefully consider
the choice of algorithm and its particular
strengths and weaknesses.

In the following small examples, both im-
plementations produced identical results due
to the small size of these datasets; for the
sake of brevity I will only list the output of
one implementation per data set here, but
the full results of each can be found in the
appendix. The first dataset contains a num-
ber of predictors (e.g., price, sugar, alcohol
content) and responses (e.g., hedonic rating,
food pairing)
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Note that this data is from [1] and this analysis produces nearly identical results to those
obtained there, as this is how I verified the accuracy of my implementations. The data is

shown below:

Table 1: Wine Dataset: Predictors and Responses

Price Sugar Alcohol Acidity Hedonic Goes with meat Goes with dessert

Winel 7 7 13 7 14 7
Wine2 4 3 14 7 10 7
Wine3 10 ) 12 5 8 5
Wine4 16 7 11 3 2 4
Wineb 13 3 10 3 6 2

=~ =3 Ot O 00

For this analysis we will use the first four predictors (Price, Sugar, Alcohol, and Acidity)
to predict the remaining three (Hedonic, Goes with meat, Goes with dessert). The following
is the output resulting from the implementation of the NIPALS algorithm discussed above

on this dataset:

Table 2: X Weights (W) Table 3: Y Weights (C)

‘ Comp 1 Comp 2 Comp 3 ‘ ‘ Comp 1 Comp 2 Comp 3 ‘
0.5136996 -0.3379159 -0.3491784 -0.6092803 0.0517961  0.9672011
-0.2010128 -0.9400125 0.1611530 -0.7024173 -0.2683721 -0.2181410
-0.5704780 -0.0187754 -0.8210983 -0.3679503 -0.9619218 -0.1301400

-0.6084912  0.0428572  0.4217840

Table 4: X Loadings (P) Table 5: Y Loadings (Q)

‘ Comp 1 Comp 2 Comp 3 ‘ Comp 1 Comp 2 Comp 3 ‘

1.8706265 -0.6844684 -0.1796093 -0.6092803  0.0517961  0.9672011
-0.0468215 -1.9977328  0.0828934 -0.7024173  -0.2683721 -0.2181410
-1.9546910 0.0282876 -0.4223541 -0.3679503 -0.9619218 -0.1301400

-1.9874206  0.0555821  0.2169560
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Table 6: X Scores (T) Table 7: Y Scores (U)

‘ Comp 1 Comp 2 Comp 3 ‘ ‘ Comp 1 Comp 2 Comp 3 ‘
-0.4538071 -0.4662144 0.5715796 -1.9451050 -0.7611282 0.6190969
-0.5399032  0.4940055 -0.4631016 -0.9347239  0.5305490 -0.5388495
0.0000000  0.0000000  0.0000000 0.2327121  0.6083728  0.0823078
0.4303963 -0.5326520 -0.5301329 0.9158460 -1.1575299 -0.6138664
0.5633140  0.5048609  0.4216549 1.7312708  0.7797364  0.4513112

Table 8: Regression Scalars (b)

‘ Component Estimate ‘

1 2.756789
2 1.627162
3 1.119134

Table 9: Regression Coefficients (Original Scale)

Hedonic Goes_with_meat Goes,with,dessert‘

Price -1.00 -0.0333333 0.0416667
Sugar 0.75 0.2750000 0.5937500
Alcohol  -4.00 1.0000000 0.5000000
Acidity 2.75 0.1750000 0.0937500

Table 10: Variance Explained by Components (X)

‘ Latent Vector  Explained Variance Cumulative ‘

1 70.4506% 70.4506%
2 27.8958% 98.3464%
3 1.6536% 100.0000%
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Table 11: Variance Explained by Components (Y)

Latent Vector  Explained Variance Cumulative ‘

1 63.3324% 63.3324%
2 22.0638% 85.3962%
3 10.4372% 95.8333%

The second dataset is Fisher’s Iris dataset, which contains measurements of various features
of iris flowers e.g., sepal length, sepal width, petal length, and petal width (for the sake of
this analysis the species variable has been omitted)

Table 12: Iris Dataset (First 6 Observations): Predictors and Responses

Sepal Length Sepal Width Petal Length Petal Width

5.1 3.5 1.4 0.2
4.9 3 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
) 3.6 1.4 0.2

0.4 3.9 1.7 0.4

The goal of the following analysis is to predict the petal length and width based on the sepal
length and width. The following is the output resulting from the implementation of the SVD
algorithm discussed above on this dataset:

Table 13: X Weights (W) Table 14: Y Weights (C)
‘ Comp 1 Comp 2 ‘ ‘ Comp 1 Comp 2 ‘
-0.9046320 -0.4261936 -0.7350032 -0.5400163
0.4261936 -0.9046320 -0.6780636 -0.8416546

10
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Table 15: X Loadings (P) Table 16: Y Loadings (Q)

‘ Comp 1 Comp 2 ‘ ‘ Comp 1 Comp 2 ‘
-11.159218  -4.946903 -0.7350032 -0.5400163

6.224581  -10.500219 -0.6780636 -0.8416546

Table 17: Regression Scalars (b)

‘ Component Estimate ‘

1 15.444539

2 1.203207

Table 18: Regression Coefficients (Original Scale)

‘ Petal.Length Petal. Width ‘

Sepal.Length 1.775592 0.7232920
Sepal.Width -1.338623 -0.4787213

Table 19: Variance Explained by Components (X)

‘ Latent Vector  Explained Variance Cumulative ‘

1 54.7898% 54.7898%
2 45.2102% 100.0000%

Table 20: Variance Explained by Components (Y)

‘ Latent Vector  Explained Variance Cumulative ‘

1 80.0449% 80.0449%
2 0.4858% 80.5307%

11
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7  Conclusion

Partial Least Squares (PLS) regression is
a powerful subset of a broader family of sta-
tistical methods that continue to be of statis-
tical interest. The NIPALS and SVD-based
algorithms provide two different approaches
to computing PLS regression, each with its
own strengths and weaknesses; the NIPALS
algorithm is simple and easy to implement,
while the SVD-based algorithm is more effi-
cient and can handle larger data sets. The
choice of which to use will depend on the
specific characteristics of the data set being
analyzed, with neither algorithm universally
outclassing the other. As the landscape of
statiscial analysis evolves, the solutions it
demands are likely to be increasingly mul-
tivariate, all but ensuring that it is only a
matter of time before PLS finds its way into
more and more applications. As researchers
and practitioners continue to explore new
ways to analyze increasingly complex data
sets, PLS will undoubtedly linger, cement-
ing Wold and his collegues in the continually
generating history of statistics.

12
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